
MODEL DRIVEN DEVELOPMENT OF WEB SERVICES AND DYNAMIC WEB
SERVICES COMPOSITION

by

FEI CAO

Submitted to the graduate faculty of The University of Alabama at Birmingham,
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

BIRMINGHAM, ALABAMA

2005

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2005 2. REPORT TYPE

3. DATES COVERED
 00-00-2005 to 00-00-2005

4. TITLE AND SUBTITLE
Model Driven Development of Web Services and Dynamic Web Services
Composition

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Alabama at Birmingham,Department of Computer and
Information Sciences,Burmingham,AL,35294

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

168

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ABSTRACT OF DISSERTATION

GRADUATE SCHOOL, UNIVERSITY OF ALABAMA AT BIRMINGHAM

Degree Ph.D. Program Computer and Information Sciences .

Name of Candidate Fei Cao __ _ .

Committee Chair Barrett R. Bryant_______________________________________

.Title Model Driven Development and Dynamic Composition of_Web Services ___

Web Services (WS) has emerged as a new component-based software develop-

ment paradigm in a network-centric environment based on the Service Oriented Architec-

ture (SOA), the open standard description language XML and transportation protocol

HTML. Therefore, legacy software systems can incorporate WS technology in order to be

reused and integrated in a distributed environment across heterogeneous platforms. While

WS is gaining its momentum toward wide adoption in the software industry, there are

two critical issues yet to be addressed before its power is fully unleashed: 1) the migra-

tion of legacy distributed software system toward WS applications; 2) the innovation of

new infrastructure, and languages in support of WS application development. The contri-

bution of this dissertation is in these two directions.

First, a comprehensive, systematic, automatable and language neutral approach is

presented toward reengineering legacy software systems to WS applications, rather than

rewriting the whole legacy software system from scratch in an ad-hoc, language-specific

manner. It is noteworthy that this approach is not specific to reengineering WS applica-

tions, but can be generalized to reengineering legacy software systems to other applica-

tions. Moreover, this approach offers a means for modeling assets exchange in both hori-

zontal direction and vertical direction (along the meta-model stack).

 ii

 iii

Second, with the dynamic features of both service consumption and provisioning

in distributed environment, WS applications are subject to dynamic composition. As

such, in a bottom up order, this dissertation presents an infrastructure for dynamic WS

composition, and its high-level programming model based on a hybrid of logic program-

ming and imperative programming. In particular, with the logic programming paradigm

and the rule inference engine support, not only autonomous composition is achieved, but

also WS selection specification can be seamlessly integrated with composition process,

which is necessary for achieving customizability, optimization and Quality of Service

(QoS) guarantee for dynamic composition.

To Yi,

It’s you that brings love to me so close.

To Mom and Dad,

It’s your love that makes me reach so far.

 iv

ACKNOWLEDGMENTS

 My deepest gratitude to my advisor, Dr. Barrett Bryant - you are the one that

brought me numerous chances, unfaltering patience, meticulous and inspiring advice, and

equipped me with the courage to strive through one of the most challenging periods of

my life, yet make it one of my most joyful and memorable time as well. Thanks, Dr. Bry-

ant, for ordering me the right track, and letting me enjoy!

 I’d like to sincerely thank my committee members. Dr. Jeff Gray, you brought me

the new landscape on the horizon, and your vision has always been enlightening. Your

dedication to students is the great assets to me and my fellow students. Dr. Rajeev Raje,

Dr. Mikhail Auguston, and Ms. Carol Burt, I greatly appreciate the opportunity of being a

member of UniFrame research project. Without you, I would not have gained so many

valuable experiences. I feel so blessed to have had many precious communications with

you. I am indebted to your critical thoughts and perceptive suggestions on my work,

which means a lot to me. Dr. Kevin Reilly and Dr. Murat Tanik, I appreciate your great

discussions on my work on various occasions.

 To my fellow SoftCom-ers, Wei Zhao, Hui Wu, Alex Liu, Xiaoqing Wu, Jing

Zhang, Jane Lin, Suman Roychoudhury, Faizan Javed, I cherish our work and fun time

together. Thank you for your help and encouragement during past years—you are all my

great buddies! Thanks also go to Ms. Kathy Baier and Ms. Janet Sims, who have been so

friendly and helpful during my study here.

 v

At this moment, I am particularly grateful to my Mom and Dad from the bottom of my

heart—no words are adequate enough to express my appreciation to your love for all my

past life. Your love empowers me to steer through ups and downs and makes me come to

this point today. Thank you, Mom and Dad. Also to Yi, you are the gift from the heaven

that I can never dream of. Your love makes me feel more confident and enlightened for

the rest of my life. You are the one that is always in the deepest part of my heart.

 Last, I acknowledge the financial support from the Office of Naval Research. The

work presented in this dissertation was supported in part by the U. S. Office of Naval Re-

search under the award number N00014-01-1-0746.

 vi

TABLE OF CONTENTS

Page

ABSTRACT.. ii

DEDICATION... iv

ACKNOWLEDGMENTS ...v

LIST OF TABLES... xi

LIST OF FIGURES .. xii

LIST OF ABBREVIATIONS..xv

CHAPTER

1 INTRODUCTION ...

1.1 Evolution of Component-Based Software Development.............................1
1.2 Web Services as a New Paradigm for Component-Based Software

Development ..3
1.2.1 Problems with Web Services ...3

1.2.1.1 Problems with WS as an evolutionary distributed component-
based software development paradigm...3

1.2.1.2 Problems with WS as a Service-Oriented Computing (SOC)
paradigm ..4

1.3 Research Objective ..4
1.4 Outline

2 BACKGROUND ...7

2.1 Software Components..7
2.2 A Survey of Component Technology Models ...9

2.2.1 Microsoft COM..9
2.2.2 Sun Enterprise JavaBeans (EJB)..10
2.2.3 OMG CORBA Component Model (CCM)..12
2.2.4 Microsoft .NET component model ..14

2.3 A Survey of Component Development and Composition Techniques......16
2.3.1 Model Driven Development (MDD) ...16

 vii

TABLE OF CONTENTS

Page

2.3.1.1 Model Driven Architecture (MDA)...16
2.3.1.2 Model-Integrated Computing (MIC) ...17

2.3.2 Generative Programming (GP) ..19
2.3.3 Aspect-Oriented Programming ..19

2.3.3.1 Aspectual Components: a language solution20
2.3.3.2 Aspect-Oriented Component Engineering (AOCE): an engineering

solution...21
2.3.3.3 Other related work on aspects in CBSE...22

2.3.4 Service-Oriented Computing ...22
2.3.5 Software Factory..24
2.3.6 UniFrame ...25

2.4 Automatic Feature-Oriented Domain Analysis for a Family of
Components ...27

2.4.1 Feature-Oriented Domain Analysis (FODA).......................................27
2.4.2 The need of automation for Feature-Oriented Domain Analysis.........28
2.4.3 The algorithm to compute feature diagram..29

2.4.3.1 Normalization of feature diagram..29
2.4.3.2 Computing normalized feature diagram ..31

2.4.4 A Generic Feature Modeling Environment (GFEM)...........................35
2.5 Aspect-Oriented Generative Domain Modeling for Multi-Stage Generative

Component Assembly..38
2.5.1 Specification of components in UniFrame GDM38

2.5.1.1 Two-Level Grammar ...38
2.5.1.2 Component Description Language ..40

2.5.2 Separation of concerns in GDM ..40
2.5.3 Generative multi-stage component assembly43

2.5.3.1 Specification of aspect and the use of aspect.................................43
2.5.3.2 Aspectual component as a paradigm for component assembly45
2.5.3.3 Overall picture ...46

2.6 Discussion..48
2.7 Summary ..49

3 MODEL DRIVEN REENGINEERING LEGACY SOFTWARE SYSTEMS TO
WEB SERVICES...50

3.1 Motivation..50

3.1.1 Definition of legacy software system ..50
3.1.2 Approaches for using Web Services as a wrapper...............................51
3.1.3 Problems for applying MIC to reengineering legacy software to WS.52

3.2 Marshaling and Unmarshaling Models Using Entity-Relationship (ER)
Model ...53

 viii

TABLE OF CONTENTS

Page

3.2.1 Rationales...54
3.2.2 Overview of the approach..56

3.3 Reengineering Legacy Software to Web Services.....................................57
3.3.1 Marshaling legacy software model to ER model.................................57
3.3.2 Unmarshaling ER Model to GME Meta-model...................................61

3.4 The Web Services Modeling Environment..64
3.5 Model Driven Approach to Enrich Web Services Semantics....................67
3.6 Related Work ...71

3.6.1 Model-driven approach..71
3.6.2 Modeling WS...73

3.7 Summary ..74

4 DYNAMIC WEB SERVICES COMPOSITION ..76

4.1 Motivation..76
4.2 Overview of the Approach...77

4.2.1 Runtime code manipulation through assertive and autonomous
composition rules ...77

4.2.2 Salient features...79
4.3 Design and Implementation of Dynamic Web Services Composition80

4.3.1 Composition in Peer-to-Peer (P2P) paradigm......................................81
4.3.2 Infrastructure for WS composition ..82
4.3.3 Programming model...85

4.3.3.1 AOP for WS composition specification...85
4.3.3.2 Implementation of dynamic weaver...86

4.3.4 The need for a serializeable aspect weaving specification in XML88
4.3.5 Autonomous component composition using a rule inference engine ..90

4.3.5.1 The need for a rule inference engine..90
4.3.5.2 Jess as the rule engine ..91
4.3.5.3 Rule specification for autonomous composition............................92

4.4 Case Study ...93
4.4.1 Composing crosscutting credit authorization WS components - putting

the pieces together..93
4.4.2 Composing travel planning WS components – dynamic composition

programming model illustrated..95
4.4.2.1 Static front end...98
4.4.2.2 Dynamic backend...98

4.4.3 A financial WS portal: composition specification through declarative
logic programming...102

4.5 Performance Evaluation...109
4.5.1 Performance Evaluation...109
4.5.2 Test setup ...109

 ix

 x

TABLE OF CONTENTS

Page

4.5.3 Test result evaluation ...110
4.6 Related Work ...113

4.6.1 Component composition at different abstraction level and scope113
4.6.2 Using AOP for composition and adaptation114
4.6.3 Dynamic WS..115
4.6.4 Handling of non-functional concerns...116
4.6.5 Cross-language weaving over .NET ..116

4.7 Summary ..117

5 FUTURE WORK...119

5.1 Enrich ER-Based Semantic Intermediate Model Operations...................119
5.2 Moving into GME+Eclipse..120
5.3 Aspect Management...121
5.4 Rule Management ..123

5.4.1 Model-driven configuration ...123
5.4.2 Mobile agent based configuration..123

6 CONCLUSION..126

LIST OF REFERENCES...129

APPENDIX

A AN EXAMPLE OF GENERATIVE MULTI-STAGE COMPONENT
ASSEMBLY ..137

B HOOK INSTRUMENTATION THROUGH BINARY CODE
 MANIPULATION...141

C USING MOBILE AGENT FOR COMPONENT SEARCHING........................146

LIST OF TABLES

Table Page

2.1 Comparison between MIC and programming language 18

2.2 Assembly related aspects 42

2.3 Generative Programming in UniFrame 49

3.1 Marshaling rules 59

3.2 Unmarshaling rules 62

4.1 Composition specification in the form of aspect weaving 87

4.2 The non-functional properties for third-party financial WS provider 104

B.1 Opcodes for operators in CIL 143

 xi

LIST OF FIGURES

Figure Page

2.1 COM component 10

2.2 EJB component for Entity Bean and Session Bean 12

2.3 CCM component 13

2.4 .NET component specification 15

2.5 Model-Driven Architecture for reengineering legacy software to
component models 17

2.6 A simple example of meta-model and model 18

2.7 Service Oriented Architecture (SOA) 23

2.8 Architecture of WS description elements 24

2.9 Process of Uniframe 26

2.10 Feature diagram representation 27

2.11 Mixture of feature representation 30

2.12 Normalized feature representation 30

2.13 Variation of feature diagram 31

2.14 Computing normalized feature diagram 33

2.15 Computing AND result 34

2.16 Computing XOR result 34

2.17 Computing OR result 35

2.18 Meta-model of normalized feature model 36

 xii

LIST OF FIGURES (Continued)

Figure Page

2.19 Generic Feature Modeling Environment (GFEM) 37

2.20 Feature instances generated from feature model 38

2.21 Aspect-Oriented Generative Domain Modeling (AOGDM) 43

2.22 Multi-stage gluing/wrapping 47

3.1 Marshaling and unmarshaling models at different levels 54

3.2 Eliciting Meta-models from model via marshaling and unmarshaling
models using ER model 56

3.3 A banking example 58

3.4 Stepwise marshaling 58

3.5 Marshaling WSDL model to ER model 60

3.6 The ER model of Banking Service WSDL 61

3.7 The meta-model of banking domain WSDL in GME 64

3.8 The banking domain-specific WS modeling environment 65

3.9 WSDL code synthesis using GME BON API 66

3.10 The WSDL for a banking WS 67

3.11 Banking behavior model based on FSM meta-model 70

3.12 Banking behavior model based on FSM meta-model 71

4.1 Overview of the dynamic composition approach 78

4.2 The P2P WS component compositions in .NET WS environment 81

4.3 The architecture of DynaCom 83

4.4 Instrumentation of IL code of a WS method 88

4.5 The AUS schema 90

 xiii

 xiv

LIST OF FIGURES (Continued)

Figure Page

4.6 Composing credit authorization component assertively 94

4.7 Class diagram for travel planning WS components 96

4.8 Dynamic composing travel planning WS component 97

4.9 Financial WS portal 103

4.10 Fact specification in Jess 106

4.11 Query into fact base in Jess 106

4.12 Jess rule for seamlessly integrating WS searching and dynamic
WS composition 108

4.13 Benchmarking dynamic WS adaptation 111

4.14 Performance degradation with 0 adaptation advice 113

5.1 Merger operation to enable layered model composition 120

5.2 Eclipse-based tool integration for seamless model marshaling
and unmarshaling 121

5.3 Adaptive Object Model for aspect definition 122

5.4 Push vs. pull mode in updating fact base 124

B.1 An C# method to be instrumented with hook 141

B.2 Hook instrumentation through binary code manipulation 142

C.1 Architecture of searching component with Voyager Agent 146

LIST OF ABBREVIATIONS

AAR Adaptation Advice Repository

ADL Aspect Definition Language

API Application Programming Interface

AOGDM Aspect-Oriented Generative Domain Modeling

AOM Adaptive Object Model

AOP Aspect-Oriented Programming

AOCE Aspect-Oriented Component Engineering

AUL Aspect Usage Language

AUS Aspect Usage Specification

BON Builder Object Network

BPEL4WS Business Process Execution Language for Web Services

CBSE Component-Based Software Engineering

CCM CORBA Component Model

CDL Component Description Language

CLR Common Language Runtime

CIL Common Intermediate Language

COM Component Object Model

CORBA Common Object Request Broker Architecture

CTS Common Type System

DCOM Distributed Component Object Model

 xv

LIST OF ABBREVIATIONS (Continued)

DynaCom Dynamic Composition

EJB Enterprise JavaBeans

ER Entity-Relationship

FCO First-Class Object

FDA Feature Diagram Algebra

FDL Feature Description Language

FODA Feature-Oriented Domain Analysis

FSM Finite State Machine

GDM Generative Domain Model

GFME Generic Feature Modeling Environment

GME Generic Modeling Environment

GP Generative Programming

HTTP HyperText Transportation Protocol

IDE Integrated Development Environment

IDL Interface Definition Language

IIOP Internet Inter-Orb Protocol

IIS Internet Information Service

J2EE Java 2 Enterprise Edition

JIT Just-In-Time

MDA Model-Driven Architecture

MDB Message-Driven Beans

MDD Model Driven Development

 xvi

LIST OF ABBREVIATIONS (Continued)

MIC Model-Integrated Computing

MOF Meta Object Facility

MS Microsoft

MTS Microsoft Transaction Server

OCL Object Constraint Language

OMG Object Management Group

ORB Object Request Broker

P2P Peer-to-Peer

PIM Platform Independent Model

PSM Platform Specific Model

QoS Quality of Service

RMI Remote Method Invocation

RPC Remote Process Call

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SOC Service-Oriented Computing

TLG Two-Level Grammar

UDDI Universal Description, Discovery and Integration

UML Unified Modeling Language

UMM Unified Meta-object Model

URL Universal Resource Locator

UUID Universally Unique Identifier

 xvii

 xviii

LIST OF ABBREVIATIONS (Continued)

VDM Vienna Development Method

WS Web Services

WSDL Web Services Description Language

XMI XML Metadata Interchange

XML Exchangeable Markup Language

 1

CHAPTER 1

INTRODUCTION

1.1 Evolution of Component-Based Software Development

Software systems are continually required to address increasing demands of scal-

ability and correctness. To meet these requirements, software development has evolved

into a process of reusing existing software assets rather than constructing a new software

system completely from scratch [McIlroy,69]. By reducing time-to-market, this approach

has improved the economic and productivity factors of software production [Devanbu,

96]. Technically, by separating overall functionality into small units, software reuse also

offers a means for better manageability [Brown, 00] and predictability [Hissam, 03] over

the constructed software system.

The granularity of software reuse has evolved in tandem with the capabilities of

existing programming languages - from functions/procedures found in imperative pro-

gramming languages, to the object/class mechanisms available in object-oriented pro-

gramming languages. The current context of software reuse also scales from standalone

software development for a single machine, to capabilities supporting distributed soft-

ware systems. Component-Based Software Engineering (CBSE) [Heineman, 01] is be-

coming an accepted engineering discipline for promoting software reuse throughout the

software engineering life cycle. Beyond software reuse, CBSE also offers a promising

way to manage the complexity and evolution of the development process through a

 2

unique means of information encapsulation and separation of concerns at different ab-

straction levels.

With the advancement of internet technology, component-based software devel-

opment has unleashed its impact into the distributed environment, while exhibiting such

new features as follows:

a. The scope of component selection and reuse is extended. Consequently, com-

ponent composition requires a prerequisite discovery process for identifying a

matching component.

b. Distributed components are usually heterogeneous with respect to implementa-

tion languages, and host platforms. With different type systems or component

models, interoperation between components will not be possible without lever-

aging proper bridging technology.

c. Because of the unpredictability of network transport, not only functional proper-

ties, but also non-functional properties (e.g., Quality of Service [Raje, 02] and

economical properties such as pricing of service) are of critical concern to guar-

antee the proper delivery of services offered by the assembled distributed soft-

ware systems. QoS includes availability, throughput, and access control, to

name a few.

d. The coupling between components is loose. A deployed component in a distrib-

uted system is subject to frequent adaptation or replacement with a new version

to accommodate ever-changing business requirements externally as well as the

computing resource status internally. Those requirements can be either func-

tional or non-functional.

 3

1.2 Web Services as a New Paradigm for Component-Based Software Development

Those new features pose new problems for developing software systems based on

distributed components. Recent years have seen the emergence of Web Services (WS)

technology [Newcomer, 02] as a new component-based software development paradigm

in a network-centric environment based on the Service Oriented Architecture (SOA)

[Colan, 04], the open standard description language XML and transportation protocol

HTTP. Consequently, distributed component composition can be achieved by wrapping

heterogeneous components with a WS layer for interoperation. Using WS as a common

communication vehicle, component interoperation is greatly simplified compared with

such bridging technology as CORBA1, where different interoperation implementations

are needed for each pair of components contingent on their underlying implementation

technologies.

1.2.1 Problems with Web Services

1.2.1.1 Problems with WS as an evolutionary distributed component-based software de-

velopment paradigm

While WS enables the interoperation among heterogeneous distributed compo-

nents, which drives the reengineering of legacy software system into WS applications,

existing work in this direction requires either expensive manual effort or is language-

specific. With the heterogeneity of legacy software systems in languages and platforms, a

language-neutral, automatable process is needed to reengineering legacy software sys-

tems to WS applications.

1 CORBA® – Common Object Request Broker Architecture – http://www.omg.org/corba

 4

1.2.1.2 Problems with WS as a Service-Oriented Computing (SOC) paradigm

In addition to offering an interoperability infrastructure for distributed compo-

nents, WS also incorporates service discovery infrastructure in accordance with SOA.

With problem (a) and (b) being embraced, current WS technology is yet to address the

concerns as set forth in (c) and (d). Specifically,

1). in mission critical scenarios such as finance or military, there is a need for guar-

antee of service availability continuously, rather than shutting down the system

for services adaptation;

2). in distributed environments, service consumption experiences are dynamic and

desirable to be seamless, thus the customizability of service dynamically is of

vital importance in a service-oriented environment.

As such, static component composition is not adequate, and both functional and

non-functional property adaptation need to be applied in a dynamic fashion. Along this

line, this dissertation presents a dynamic component composition paradigm in WS envi-

ronment for adapting WS functionally and non-functionally while maintaining the avail-

ability of WS.

1.3 Research Objective

To fully unleash the power of WS for reusing legacy software components in an

internet scale, this dissertation addresses the problems as described in the preceding sec-

tion. Specifically, the research objectives are twofold: model-driven reengineering WS

and dynamic WS composition. The contribution can be summarized as follows:

 5

1). A model-driven approach to reengineering WS in a systematic, automatable and

language neutral manner for WS [Cao-d,05]. A meta-modeling approach is ini-

tiated in [Cao, 04] based on marshaling and unmarshaling models using Entity-

Relationship (ER) models [Cao-b, 05]. Based on the WS meta-model, a WS

domain specific modeling environment can be created for synthesizing WS ap-

plication code, such as Web Services Description Language (WSDL) ([Cao-c,

03]. [Cao-e, 05]). To our best knowledge, there is no peer work that addresses

either systematic meta-model construction, or sufficient model-based WS code

generation, while our work represents a comprehensive solution to both issues.

2). A non-invasive, cross-language, adaptable approach to dynamic WS composi-

tion [Cao-e, 05]. A dynamic WS composition framework based on .NET2 is cre-

ated, for which WS applications are captured at Common Language Runtime

(CLR) [Gough, 02], and Common Intermediate Language (CIL) [Gough, 02] is

manipulated at Just-In-Time (JIT) compilation time for adapting WS at runtime.

Consequently, glue-wrapper code can be instrumented at runtime to achieve dy-

namic WS composition. Moreover, the run-time composition strategy can be

adapted to accommodate either external business rules or internal requirements

on computational resources.

1.4 Outline

Chapter 2 provides background information, including a survey of component-

based software development approaches. Also included are those technologies that are at

the core of the research approaches that are presented in this dissertation, such as Model-

2 .NET - Microsoft .NET framework - http://www.microsoft.com/net

 6

Driven Architecture (MDA3), Model-Integrated Computing (MIC) [Lédeczi, 01], Aspect-

Oriented Programming (AOP) [Kiczales, 97], Generative Programming (GP) [Czarnecki,

00], and SOC.

Chapter 3 details the model-driven reengineering of legacy software systems to

WS applications. That chapter starts off by elaborating on the motivation for the need a

model-driven approach for reengineering legacy software system, then explores the proc-

ess of eliciting meta-models based on marshaling and unmarshaling models using ER

models. Different types of marshaling are identified; model marshaling and unmarshaling

rules are made explicit. Based on the WS meta-model, a WS modeling environment is

described based on the Generic Modeling Environment (GME) tool [ISSS, 01] for WS

code synthesis. That chapter also illustrates the WS code synthesis process using the

Builder Object Network (BON) API [ISSS, 01] to illustrate why the MIC based approach

for code generation is more flexible than the UML profiler [Booch, 99] based static map-

ping approach.

Chapter 4 introduces the dynamic WS composition. A dynamic WS composition

infrastructure is presented based on .NET CLR, which offers two types of dynamic com-

position paradigms: assertive and autonomous. WS composition is specified following

the syntax of AspectJ [Kiczales, 01] for separating composition specification from WS to

be composed, as well as for providing a modularized specification for composing WS

handling cross-cutting concerns.

Chapter 5 describes some ideas that can extend the work presented in this disser-

tation. Chapter 6 presents the concluding remarks.

3 MDA - Model-Driven Architecture - http://www.omg.org/mda

 7

CHAPTER 2

BACKGROUND

This chapter begins with the definition of software components in Section 2.1,

then provides a survey of both component models in Section 2.2 and development tech-

niques for component-based software systems in Section 2.3. The contributions of this

dissertation which are presented in the following two chapters are based on the synthesis

of this background knowledge and ideas. Particularly, Section 2.3 includes the descrip-

tion of the UniFrame4 project, which is the research project that the author has been asso-

ciated with during the past 3 years, and contributes to the motivation of the work pre-

sented in this dissertation.

This chapter also includes the description of prior work on automatic Feature-

Oriented Domain Analysis (FODA) in Section 2.4 and Aspect-Oriented Generative Do-

main Modeling (AOGDM) in Section 2.5, which not only represent two important ele-

ments of component-based software development themselves, but also further comple-

ments the description of UniFrame project. Particularly, that work also showcases the

synthesis of the techniques presented in Section 2.2 and 2.3.

2.1 Software Components

The definition of what constitutes a software component has been addressed

widely in the literature. Rather than proposing a new definition, we adhere to that given

4 http://www.cs.iupui.edu/UniFrame

 8

by Szyperski [Szyperski, 02], which characterizes the essential properties of a software

component as: 1) a unit of independent deployment, 2) a unit of third-party composition,

and 3) has no (externally) observable state. Specifically, this definition leads to the fol-

lowing requirements for CBSE development:

 as a deployment unit, software infrastructures are needed for running a compo-

nent, such as CORBA, J2EE5, .NET. These technologies are briefly described in

the next section.

 a component needs to specify contractually its interface and context dependency

explicitly. These contracts state what functionality the component provides, and

also what the component requires from the environment and other components.

The component specification can be UML based [Cheesman, 01], or formal

methods based [Leavens, 01].

 as a component has no externally observable state, there is no difference between

any two copies of a component. This contrasts with an object, which has its own

observable state encapsulated together with its behavior. Note that a component is

quite often built upon a collection of objects, but it is not necessary that every

component is composed of objects: a component can be represented in any pro-

gramming language style (e.g., an imperative programming language, a logic pro-

gramming language, or a hybrid language).

Distributed software components exhibit yet one more characteristic: the heterogeneity of

environment and language. Moreover, in addition to functional properties, a software sys-

tem composed of distributed software components may embrace a rich set of non-

functional properties [Raje, 02] (e.g., throughput, availability, and end-to-end delay).

5 J2EE - Java 2 Enterprise Edition - http://java.sun.com/j2ee

 9

2.2 A Survey of Component Technology Models

This section provides a survey of several popular component models that are ana-

lyzed based on the essential characteristics described in the previous section. They are

presented in the chronological order of their appearance in the market.

2.2.1 Microsoft COM

COM6 is the binary standard set by Microsoft for all software components on the

Windows platform. Every COM component can implement any number of interfaces, for

which an interface called IUnknown is mandatory, as illustrated in Figure 2.1-a. All the

interfaces for a COM component are specified using Microsoft Interface Definition Lan-

guage (MS IDL). Each interface distinguishes itself by including a Universally Unique

Identifier (UUID) in the MS IDL interface definition. As each COM component must

have an IUnknown interface, the UUID for the IUnknown interface can be used to iden-

tify the entire COM component. Figure 2.1-b is a sample MS IDL for the IUnknown in-

terface. In an IUnknown interface, the QueryInterface is used to identify if an interface is

supported or not. If supported, the corresponding reference to the interface is returned.

AddRef and Release in the IUnknown interface are used for maintaining a reference count

to the COM component. Once the reference count equals 0, the COM component will

perform self-destruction to release the memory space it occupies, and will release all the

references it holds to other COM components.

6 COM - Component Object Model - http://www.microsoft.com/com

 10

IUnknown

IXXX

IYYY

[UUID(00000001-0002-0003-0004-000000000056)]
Interface IUnknown{
 HRESULT QueryInterface ([in] const IID iid,
 [out, iid_is(iid)]IUnknown iid);
 unsigned long AddRef();
 unsigned long Release();
}

(a) (b)

Figure 2.1: COM component

The Distributed COM (DCOM) component model extends COM with distribution

based on the Remote Process Call (RPC) mechanism. Microsoft Transaction Server

(MTS) further extends DCOM with a container adding transaction and other services,

which constitutes the COM+ component model.

2.2.2 Sun Enterprise JavaBeans (EJB)

 EJB7 is the server-side component model for developing enterprise business ap-

plications in Java. It is tailored to Java-based applications, which reduces some complex

features that are inherent in CORBA (to be described later) for multi-language, cross plat-

form interoperability. An EJB is contained in an EJB Container running on a J2EE

Server. The container provides added services to EJB, such as transactions and security.

In order for the remote client to be able to access the EJB component executed in the con-

tainer, distributed objects are used in EJB providing an object-oriented composition

model. As such, every EJB (except the Message-Driven Bean, which is explained in the

7 EJB - Enterprise Java Beans - http://java.sun.com/products/ejb

 11

following part) consists of an EJBHome, EJBObject and EJB Class as are illustrated in

Figure 2.2: the EJB class is the core part of EJB representing the business logic; EJB-

Home and EJB Object are both distributed objects, the former acting as a factory for the

later, with the EJB Object representing the access point for the client to call into the

methods of the EJB Class. Also included as part of the EJB component is an XML8 de-

ployment descriptor file specifying the deployment attributes for the EJB component. An

EJB contains three types of beans:

 Entity Bean - Entity beans can be shared by multiple clients concurrently. An en-

tity bean is represented as an object, which maps to a persistent data source (e.g.,

a database). The synchronization between the entity bean and the persistent data

source is managed by either the bean itself or the container.

 Session Bean - A session bean is initiated by a single client to handle a specific

request. If multiple interactions are involved between the client and the Session

Bean, then usually a stateful session bean can be used to maintain the states

throughout the interactions. Otherwise a stateless session bean can be used to

handle each client request. The transaction for the session bean can be managed

either by the bean itself or the container.

 Message-Driven Bean (MDB) - A MDB was introduced in EJB 2.0, which is

based on JMS (Java Message Service) for data-driven component composition, as

opposed to object-oriented component composition used in Entity Beans and Ses-

sion Beans. An MDB does not require an EJBHome or EJBObject interface. A

8 XML - eXtended Markup Language - http://www.w3.org/XML

 12

EJB Home
stub

EJB Object
stub

Client
J2EE Server

EJB Home
skeleton

EJB Object
skeleton

EJB Container

EJB Class

Figure 2.2: EJB component for Entity Bean and Session Bean

MDB defines message handlers and needs to be registered to a message queue in

order to be used for handling messages sent by client applications.

2.2.3 OMG CORBA Component Model (CCM)

CORBA is the initiative of the OMG9 for enabling interconnections among dis-

tributed software components across heterogeneous platforms. CCM10 was introduced

with CORBA 3.0. In contrast to the prior CORBA object model, CCM is designed for

loose coupling between CORBA objects, facilitating component reuse, deployment, con-

figuration, extension and management of CORBA services. Figure 2.3 shows an example

of a travel agent component represented in CCM. The essential elements within a CCM

component are:

 facets, which define provided interfaces that the component exposes to clients.

 receptacles, which define the required interfaces for the component to function

appropriately.

9 OMG – Object Management Group - http://www.omg.org
10 CCM – CORBA Component Model -
http://www.omg.org/technology/documents/formal/components.htm

 13

Travel_Agent

hotel_information

promotion_packagecurrency_rate

discount

receptacle

event sink

//CCM IDL example
component Travel_agent {
 provides travel_planning;
 uses hotel_information;
 publishes promotion_package;
 consumes currency_rate;

…….

}

cancelation_fee
deposit

Attributes:

travel_planning

event source

facet

Figure 2.3: CCM component

 event sources, which publishes the events to clients.

 event sinks, which consumes the events published from clients.

 attributes, which are used mainly for component configuration.

The facets, receptacles, event sources and event sinks are ports for a CCM com-

ponent model that offer a connection-oriented composition model. The difference be-

tween the facet-receptacle connection and event source-sink connection is that the former

is connected through an object reference, but the latter is connected through an event

channel. Also illustrated in Figure 2.3 is the corresponding IDL for the travel agent com-

ponent. Similar to EJB, CCM components can be categorized into four types: service,

session, entity and process components. Service components are stateless corresponding

to a stateless session bean of EJB; session components maintain states for the duration of

 14

each session corresponding to a stateful session bean of EJB. Both entity and process

components have persistent state, but the former has a lifecycle beyond a specific process

and the latter has a lifecycle that is per-process based. A CCM component also runs

within a CCM container, which provides added services (e.g., transactions, security, and

persistence) to each CCM component.

2.2.4 Microsoft .NET component model

In the Microsoft .NET framework, an assembly is a component that runs on Mi-

crosoft CLR. Each .NET language (e.g., C#, VB.NET, C++.NET) can be compiled into

assembly files in the form of intermediate code, which are further compiled just-in-time

into native code that can be executed in the CLR. Although an assembly component re-

lies on type information for specifying component interoperation (using contracts as in

COM), the interoperability for an assembly is at the logical, intermediate code level

rather than strictly at the physical, binary level. This makes assembly components easier

to use and integrate when compared to COM components. Specifically, the contract

specification for an assembly component is represented with machine readable, fully

formatted metadata embedded together with the MS CIL code inside an assembly. CIL is

based on Common Type System (CTS) [Gough, 02].The metadata can be readable and

writable by CLR. It can also be extendable by user applications through custom-

attributes. Also included in the metadata is the component dependency information de-

scribed with a manifest of the names of adjunct modules11/assemblies, each providing ex-

11 A .NET application can be compiled either as a module or an assembly. But a module has to be affiliated
with an assembly in order to be deployed. Thus only an assembly can be treated as a complete component.
An assembly can be composed of multiple modules together with references to multiple dependent assem-
blies.

 15

tra type definitions and code. Figure 2.4 illustrates a manifest for an assembly component

“HumanResource”. Enclosed in each assembly block in Figure 2.4 are a public key token

and version information, which are part of the strong name schema for an assembly com-

ponent naming. The strong name acts as a UUID in a COM component for resolving the

assembly component reference when loaded by CLR. Note the dependency specification

is missing in the COM component specification. The CLR, as the assembly component

execution environment, further makes use of the ubiquitous metadata for managed execu-

tion, providing appropriate memory management and code verifiability for ensuring sys-

tem security.

.assembly extern mscorlib
{ .publickeytoken = (B7 7A 5C 56 19 34 E0 89)
 .hash = (E6 8E F4 00 2B 3C 3C 88 D6 32 F2 72 A3 22 FA C8
 A7 7B 24 07)
 .ver 1:0:5000:0 }
.assembly extern Payroll
{ .publickeytoken = (CA 87 F9 84 99 97 A5 37)
 .ver 0:0:0:0}
.assembly extern System
{ .publickeytoken = (B7 7A 5C 56 19 34 E0 89)
 .ver 1:0:5000:0}
.assembly HumanResource
{ .custom instance void
[mscorlib]System.Reflection.AssemblyKeyFileAttribute::.ctor(string)=(/…/)
 // ...keyPair.snk..
 .publickey = (/…./) // ignored for saving space
 .hash algorithm 0x00008004
 .ver 0:0:0:0}
.file Travel.netmodule
 .hash = (FE D5 17 E3 9E 25 55 1F 56 F0 1F AF 97 5E 2C 62 34 F9 8D 10)
.class extern public Expense
{ .file Travel.netmodule
 .class 0x02000002}
.module HumanResource

Figure 2.4: .NET component specification - a manifest of an assembly component of hu-
man resource management: the italicized part represents the specification for dependent
modules/assemblies; the bold-font represents the main module and the metadata for the
assembly.

 16

2.3 A Survey of Component Development and Composition Techniques

This section describes several component development and composition tech-

niques based on state-of-the-art software engineering ideas. These paradigms can be ap-

plied across different component models rather than being restricted to a specific compo-

nent model.

2.3.1 Model Driven Development (MDD)

MDD uses higher-abstraction models for developing lower-abstraction software applica-

tions. Two representative MDD paradigms are MDA by OMG and MIC by Vanderbilt Univer-

sity.

2.3.1.1 Model Driven Architecture (MDA)

MDA is an initiative from OMG for capturing the essence of a software system in a man-

ner that is independent of the underlying implementation platform. MDA can assist in

reengineering legacy software systems and Commercial-Off-The-Shelf (COTS) software

into Platform Independent Models (PIMs). A PIM can be mapped to software compo-

nents on Platform Specific Models (PSMs), such as CORBA, J2EE or .NET. In this way,

legacy systems and COTS components can be reintegrated into new platforms efficiently

and cost-effectively [Frankel , 03]. Figure 2.5 illustrates the whole process in MDA. The

vision of MDA also includes standards that enable generative construction of interoper-

ating bridges between different technologies leveraging application and platform knowl-

edge. One of the MDA technologies is an Interworking Architecture12, which provides a

bridge that allows COM and CORBA objects to interoperate from model-driven

12 http://www.omg.org/cgi-bin/doc?formal/02-06-21

 17

PIM

COTS

Legacy APP

PSM (CCM,EJB,.NET…)

Figure 2.5: Model-Driven Architecture for reengineering legacy software to component
models

specifications.

2.3.1.2 Model-Integrated Computing (MIC)

MIC is essentially a development paradigm that offers a means for creating a

modeling language (meta-model), its associated modeling language interpreter (genera-

tor). Then any domain-specific model built based on the modeling language can be inter-

preted by traversing the model tree. The result of the interpretation process is the code

synthesized from the model. MIC has been widely used in middleware ([Edwards, 04],

[Gokhale, 04]) and embedded systems ([Karsai, 03]; [Lédeczi, 03]).

To ease the understanding of MIC, Table 2.1 provides an analog between MIC

and conventional programming language elements. Figure 2.6 provides an example of a

meta-model of a Finite State Machine (FSM) and the corresponding model based on it.

 18

Table 2.1: Comparison between MIC and programming language

MIC Programming Language
meta-model grammar
generator compiler/interpreter

domain-specific model application developed using the corresponding
language

code synthesized in any chosen language intermediate code or native code

State1

State2

Figure 2.6: A simple example of meta-model and model – the left one is a meta-model
Finite State Machine (FSM); the right one is a model of FSM

Furthermore, MIC includes the Generic Modeling Environment (GME) [ISIS, 01]

for creation of domain-specific models, a Model Database for model storage, and a

Model Interpretation technology for building model interpreters, which can be used to

synthesize implementation code from models. In GME, the meta-models use Unified

Modeling Language (UML) class diagrams [Booch, 99] to model the system information.

 19

2.3.2 Generative Programming (GP)

GP, as introduced by Czarnecki [Czarnecki, 00], is a software engineering para-

digm which uses automation to generate a family of elementary implementation compo-

nents; a concrete software system can then be produced automatically based on configu-

ration over the elementary implementation components. Specifically, GP contains two-

levels of abstraction: at the higher level is the problem space that includes the family

members and the requirements specifying a software system from the family members; at

the lower level is the solution space, which is composed of elementary implementation

components and their configuration knowledge (e.g., minimum redundancy, mutual ex-

clusion). The production of a software system is firstly ordered in the problem space,

which in turn maps to the solution space for implementing a software system product.

The problem space and solution space constitute the Generative Domain Model (GDM).

2.3.3 Aspect-Oriented Programming

For component assembly, there are compatibility concerns related to interface is-

sues of component connection, as well as concerns that crosscut the modularization

boundaries of individual components (e.g., Quality of Service (QoS), distribution, and

synchronization). Consequently, there is a need for capturing those concerns in a modular

way. The idea of Aspect-Oriented Programming (AOP) [Kiczales, 97] can be applied to

CBSE.

AOP provides a means to capture crosscutting aspects in a modular way with new

language constructs: an advice is used to represent the cross-cutting behavior, and a join

point (a collection of which is called pointcut) is used to specify the location in the base

 20

program to apply the advice. Finally, a new type of translator called a weaver to compose

the aspects into the base components. Aspects have a direct application to CBSE, which

is described in the remaining part of this section.

2.3.3.1 Aspectual Components: a language solution

In AOP languages such as AspectJ [Kiczales, 01], join points are represented by

referring to the syntactical constructs of the base program source, thus advices are bound

to the base program statically and hinders reuse, which is against the vision of reuse that

CBSD promotes. In [Lieberherr, 99], the concept of aspectual component is defined, for

which aspects are decoupled from the base program by being defined as a generic aspec-

tual component, which is instantiated later over a concrete data-model using a connector

construct. The concept of aspectual component fosters the integration between AOSD

(Aspect-Oriented Software Development) and CBSD. Below are some existent work that

follow the aspectual component paradigm.

 In [Suvée, 03], the JasCo language is introduced, which introduces two contructs:

aspect beans and connector. aspect beans describe functionality that crosscut

components, for which a hook is defined to represent the association between join

point and advice: The former is represented by method parameter and the method

parameter is instantiated in the connector. By applying Java binary code trans-

formation to existent binary Java Beans code to add traps to every method that a

bean implements, the connector registry will be queried at run time for hooks

(which is a language construct representing aspect definition template), and con-

sequently advices defined in hooks are weaved and executed.

 21

 In [Choi, 00], an Aspect-Oriented EJB Server (AES) is developed for which such

functionalities as transaction, persistence, security are represented as built-in as-

pects (corresponding to an aspectual component), and the bean container is

changed to generalized metaobjects possessing full control of the baseobject and

delegating method calls of the baseobject to the related build-in aspects. The re-

sponsibility of the metaobject pretty much covers the part that is done by the bi-

nary code transformation tool as well as the connector in the JasCo component

model.

2.3.3.2 Aspect-Oriented Component Engineering (AOCE): an engineering solution

In [Grundy, 00], the concept of horizontal slices through vertically-decomposed

components is used to characterize crosscutting properties of components. The aspects in

AOCE have a broad definition, which include user interfaces, collaborative work, distri-

bution, persistency, memory management, transaction processing, security, data man-

agement, component inter-relationship, and configuration characteristics. Each aspect is

comprised of a number of properties describing functional and non-functional c

istics. Based on the aspect characterizations, multiple perspectives of a componen

system can be obtained, and reasoning about component interaction in a variety of ways

can be achieved. AOCE, as an engineering approach, covers the lifecycle of compo

engineering, from component requirements and specification, to implementation, de-

ployment, and testing. In contrast to AOP, which highly relies on code weaving, AOCE

aims to use aspects to support component provisions.

haracter-

t-based

nent

 22

2.3.3.3 Other related work on aspects in CBSE

In [Duclos, 02], non-functional aspects are separated from components them-

selves to promote component (and non-functional aspect) reuse. The non-functional as-

pects are handled by the Aspect Definition Language (ADL) and Aspect Use Language

(AUL). The advice specified in ADL will be accomplished by changing the behaviors of

the Component Virtual Machine (CVM). In [Göbel, 04], a COMQUAD component

model is introduced that enables the specification and runtime support of non-functional

aspects, which is woven into the running applications by the component container acting

as a contract manager.

2.3.4 Service-Oriented Computing

Web Services (WS) have emerged as a new component-based software develop-

ment paradigm in a network-centric environment based on the Service Oriented Architec-

ture (SOA) [Colan, 04] as illustrated in Figure 2.7.

By using XML as a standard description language and HTTP as a transport proto-

col, services can be used to wrap legacy software systems to be integrated beyond the en-

terprise boundary across heterogeneous platforms. To be specific, WS uses the XML

based Web Services Description Language (WSDL) for specifying services, SOAP (Sim-

ple Object Access Protocol) messages for service invocation, and UDDI (Universal De-

scription, Discovery and Integration) registry for service discovery [Colan, 04].

 23

Service Registration
(UDDI)

Service Requestor Service Provider

Find Publish

Bind
(SOAP)

Figure 2.7: Service Oriented Architecture (SOA)

Figure 2.8 provides the WSDL structure in a class diagram. The WS messages, which are

either input or output messages, are composed of ports, each of which corresponds to a

specific data type. The portType is an abstract WS interface definition, where each con-

tained element (i.e., the operation) defines an abstract method signature. The operation

uses messages as its parameters. Binding represents an instantiation to the abstract port-

Type with a concrete protocol and data type. Service is a collection of ports, denoting a

deployment of a binding at a specific network location. The WS orchestration languages,

such as the BPEL4WS13, can be used to encode how different WS work together coop-

eratively to realize a type of component composition. Note that in contrast to conven-

tional distributed components, WS represents a stateless, loosely coupled computing

model. With the increasing popularity of WS, more vendors are either using WS as a

presentation layer for back-end components or providing infrastructural support for WS.

The above listed component development and composition paradigms are not ap-

plied in isolation, but rather contribute to each other. For example, an AOP approach can

be used at the software component design phase for capturing crosscutting concerns at

13 BPEL4WS - Business Process Execution Language for Web Services - http://www-
128.ibm.com/developerworks /library /specification/ws-bpel

 24

b in d in g

p o r tT y p e o p e ra t io n

1 . . * 1

in p u t o u tp u t

p a r t

t y p e

1

1 . . *

s e r v ic e

p o r t

m e s s a g e

1

1 . . *

Figure 2.8: Architecture of WS description elements

the PIM level, which later can be weaved together into a PSM. This is similar to the ap-

proach adopted in domain-specific aspect-oriented modeling [Gray, 01]. Additionally,

AOP can also be used to refine the granularity of the GDM [Cao-a, 05].

2.3.5 Software Factory

With new component models and infrastructure emerging each year, CBSE is be-

coming more complicated from the viewpoints of design, implementation, and deploy-

ment. Nevertheless, the goal of CBSE is not only to promote software reuse, but also to

boost the industrialization of software components in a manner similar to the success of

hardware components. Toward that end, the concept of a software factory14 has recently

been introduced [Greenfield, 04]. A software factory is defined as a “software product line

that configures extensible tools, process, and content using a software factory template

based on a software factory schema to automate the development and maintenance of

variants of an archetypical product by adapting, assembling, and configuring framework-

14 The term software factory is overloaded; the same term was used by Michael Evans in his 1989 book The
software factory : a fourth generation software engineering environment. We use the concept as defined in
[Greenfield, 04].

 25

based components” [Greenfield, 04]. A complementary vision is also described in Uni-

Frame to automate the component assembly with non-functional property constraints

based on domain knowledge, which is described in the next section.

2.3.6 UniFrame

UniFrame is a framework to for assembling heterogeneous distributed compo-

nents with non-functional property guarantee. It uses a Unified Meta-component Model

(UMM) [Raje, 00] to encode the meta-information of a component such as functional

properties, implementation technologies, and cooperative attributes. In UniFrame, a

GDM is also used to capture the domain knowledge and to elicit assembly rules. But the

use of a GDM does not include the implementation components: this part is assumed to

be ordered in a distributed system environment by different vendors observing the stipu-

lated specifications in the problem space of the GDM; those implementation components

are exposed by vendors and are subject to location by a distributed resource discovery

service [Siram, 02]. In addition, the GDM in UniFrame is used to capture the assembly

rules for the discovered components. Figure 2.9 illustrates the big picture of UniFrame.

The annotated number represents the processing order. Starting from domain experts, a

GDM will be created (1.1) and will be used together with some domain standards (1.2) as

guidelines (2.1, 2.2) for component developers to implement components in solution

space. Those implementation components, after being quantified with some QoS parame-

ters (3), will be exposed to a distributed resource discovery service (5). Thereafter, a sys-

tem integrator will query into the problem space of the GDM for available/deployed

component information (6), and then

 26

Figure 2.9: Process of Uniframe

request the resource discovery service (7) to fetch the required components (5,8) for as-

sembly. The component assembly is subject to validation (9) based on specified QoS re-

quirements. If it is not validated (11), then the integrator has to initiate the query and in-

tegration process iteratively. As it can be seen from above, the GDM stands as a crucial

part of UniFrame, and how the GDM is represented so as to facilitate the component a

sembly is of vital importance.

s-

The following two sections further details the derivation of GDM using automatic

FODA (the first account of this part can be seen in [Cao-a, 03]), and the use of AOP to

 27

refine the granularity of GDM to support generative multi-stage component assembly

(the first account of this part can be seen in [Cao-b, 03]).

2.4 Automatic Feature-Oriented Domain Analysis for a Family of Components

2.4.1 Feature-Oriented Domain Analysis (FODA)

To build a GDM, domain analysis has to be applied to scope a system family and

to identify the commonalities, variabilities and dependencies among family members.

Consequently, a family of components can be derived based on FODA. A crucial out-

come of the domain analysis phase is a feature model, which describes mandatory, alter-

native or optional features configuration of a stakeholder, as is illustrated in Figure 2.10

by feature diagrams.

F

C1 C2

F

C1 C2

F

C1 C2

F

C1 C2

Mandatory Feature Optional Feature (for C1) Alternative Feature Or Feature

Figure 2.10: Feature diagram representation

The mandatory feature is represented by being attached to an edge ending with a

filled circle. So the feature F consists of both C1 and C2 in this case, and the feature in-

stances here are {F, C1, C2}. The optional feature is represented by being attached to an

edge ending with an unfilled circle. So the feature F may or may not contain C1. The op-

 28

tional feature instances here are {F, C2} and {F, C1, C2}. The alternative feature is rep-

resented by connecting edges with an arch. So the feature F consists of exactly one of its

child features. The alternative feature instances here are {F, C1} and {F, C2}. Note that

if C1 is optional while C2 is mandatory, then the alternative feature instances here are

{F}, {F, C1} and {F, C2}, because the child feature instances derived from the C1 side

contain an empty feature. The Or feature is represented by connecting edges with a filled

arch. The Or feature instances here are {F, C1}, {F, C2} and {F, C1, C2}. If there is an

optional child feature, then the Or representation is actually equivalent to the situation

that all the child features are optional, i.e., the Or feature instances will be {F}, {F, C1},

{F, C2} and {F, C1, C2}.

2.4.2 The need of automation for Feature-Oriented Domain Analysis

However, the application of feature diagrams is quite limited, due to the fact that

current practice is not fully automated: while the size of the set of feature instances may

be expanded exponentially (which is to be exemplified in Section 2.4.2.2), a manual ap-

proach to FODA will not scale. In order to align with the vision of GP for the highest

level of automation, to cope with large scale family system processing, feature modeling

should be carried out in an automatic fashion to seamlessly generate reusable assets to be

used in application engineering for constructing a family of applications.

The FODA method in its first occurrence in [Kang, 90] uses Prolog in a prototype

tool for doing checking over some sets of feature values. However, features have to be

stored in the Prolog fact base first, rather than being analyzed directly over the feature

diagram, thus the tool is not seamlessly integrated with the visual diagram setting. A

 29

similar drawback is also with that described in [Deursen, 02], where the features are de-

scribed with textual Feature Description Language (FDL), which in turn is executed in a

separate environment “ASF+SDF Meta-Environment” [Brand, 01]. For those two ap-

proaches, graphically feature models have to be translated into intermediate feature pres-

entation language for backend post-processing, while such model-to-language translation

is lacking in these two works. Czarnecki and Eisenecker [Czarnecki, 00] also explore the

possible implementation of feature diagrams by mapping into UML, which in turn may

be used to generate some implementation codes using such CASE tools as Rational

Rose15 . The mapping process, however, is again a manual process. Also, what Rational

Rose can generate are just some skeleton codes, which are far from being complete im-

plementations.

The following section presents an algorithm for generating the set of all feature

instances from a feature diagram. Based on MIC principles, a Generic Feature Modeling

Environment (GFME) is created for automating FODA; the aforementioned algorithm is

incorporated in the model interpreter for generating feature instance sets.

2.4.3 The algorithm to compute feature diagram

2.4.3.1 Normalization of feature diagram

The representations of feature diagrams in Figure 2.10 are building blocks of an

actual feature diagram in practice, which usually intermingles the feature diagrams shown

in Figure 2.10. An example is given in Figure 2.11. This mixture form can be normalized

so that the father-feature in the feature diagram will only be either XOR (corresponding

15 http://www.rational.com

 30

to alternative), or OR, or AND in relationship to child-features. To illustrate, Figure 2.11

can be normalized into Figure 2.12.

F

C1 C2 C3 C4

Figure 2.11: Mixture of feature representation

F

F1 F2

C1 C2 C3 C4

Figure 2.12: Normalized feature representation

This normalization can be performed iteratively over all such “mixture relation” nodes in

the feature diagram. Meanwhile, each child-feature may be either optional or mandatory.

Obviously, the normalization process described here is fulfilled by adding hierarchy into

the original feature tree without loss of any commonality and variability representations,

and normalized feature diagram is easier for representation and process. After normaliza-

tion is performed, the feature diagram will be in the structure as in Figure 2.13, with

 31

F
<<feature relation>>

C1 C2

Figure 2.13: Variation of feature diagram - <<feature-relation>> =XOR |OR |AND; C1,
C2 may be a sub-diagram

each feature node in the feature diagram being added a meta-attribute feature relation to

indicate its relationship to child nodes. The proposed algorithm will be applied over such

normalized feature diagrams thereafter.

2.4.3.2 Computing normalized feature diagram

Suppose each feature node is represented as the following data structure (note

that without loss of generality, the following data structure may not be strictly consistent

with a specific C++ programming environment):

 struct FeatureNode{
 String featurename;

enum {XOR, OR, AND} feature-relation;
 /*denotes the father-child relation */

 ChildConnectionList *edges;
 /*list of connections associated with
 its child-feature nodes */

 }

 struct ChildConnectionList {
 bool isMandatory ;
 /*is a mandatory/optional feature*/
 FeatureNode * aFeature;

 32

/*point to a feature node*/
 }

From the data structure above we can see that we can get access to the child-

nodes of a feature node by traversing its associated edges. Currently, the result of the al-

gorithm to compute the feature diagram is just the set of all feature instances of a feature

diagram. The result will be represented as a list. Each element of the list corresponds to a

feature instance. Each feature instance in turn is represented as a list, which consists of

the list of pointers to the related feature nodes. The result is represented as follows:

 typedef List<FeatureInstance *> Result;
 typedef List<FeatureNode *> FeatureInstance;

Figure 2.14 is the pseudo code for the algorithm. The input parameter to the algo-

rithm is the pointer to the root node of a feature diagram. The output will be all feature

instances derived from the feature diagram. Note the variables are in italicized font while

the types are in bold font.

Beware that a Result is actually a two-dimensional data structure. If Result A has

m FeatureInstances while Result B has n FeatureInstances, then the union of A and B

has m+n FeatureInstances while the product of A and B has m×n FeatureInstances. To

exemplify the above algorithm, we use ε to represent an empty Result, × for product, ∪

for the union operation in Figures 2.15-2.17, which correspond to three types of cases for

computing the set of feature instances. Also from Figure 2.17 we can easily see the size

of the feature set may grow exponentially (as to the extreme case where all feature-

relations are OR , the size will be 2n, where n is the amount of leaf nodes).

 33

Result * processFeatureDiagram (
FeatureNode *node-root)

 {
 create a temp1:FeatureInstance with
 only node-root in it;

 create a temp2: Result with only one
FeatureInstance temp1 in it;

 if(node-root has no child nodes)
 then return temp2;

 else
 if (node-root->feature-relation==AND)
 {
 recursively call processFeatureDiagram
 over each of the node-root’s child-
 nodes, each returning a child result;

 if corresponding child node is
 “Optional”,
 add an empty FeatureInstance into the
 corresponding child result;

 calculate the production of all the
 returned child results as temp3:Result;
 return the production of temp2 and
temp3;

 }

else
 if(node-root->feature-relation==XOR)
 {
 recursively call processFeatureDiagram
 over each of the node-root’s child-
 nodes, each returning a child result;

 calculate the union of those returned
child results as temp3:Result;

 if there is a child node that is
 “Optional”,
 add an empty FeatureInstance into
temp3;

 return temp3;
 }

 else
 if(node-root->feature-relation==OR)
 {
 recursively call
 processFeatureDiagram
 over each of the node-root’s child-
 nodes, each returning a child
 result;

 for each of the child result
 returned in the above call,
 add an empty FeatureInstance into
 it;

 get the production of all the child
 results as temp3:Result;
 If all child features are
 mandatory, remove the empty
 FeatureInstance from temp3;
 return the production of temp2 and

temp3;
 }
 }

to be continued in the right pane

Figure 2.14: Computing normalized feature diagram

 34

F
<<AND>>

C1:
((m11, m12, m13)
(m21))

C2:
((n11, n12, n13, n14)
 (n21,n22)
(n31, n32, n33))

result=((F))×C1× (C2)
=((F, m11, m12, m13, n11, n12, n13, n14),
 (F, m11, m12, m13, n21,n22),
 (F, m11, m12, m13, n31, n32, n33),
 (F,m21, n11, n12, n13, n14),
 (F, m21, n21,n22),
 (F, m21, n31, n32, n33),
(F, m11, m12, m13),
(F, m21))

Figure 2.15: Computing AND result

F
<<XOR>>

C1:
((m11, m12, m13)
(m21))

C2:
((n11, n12, n13, n14)
 (n21,n22)
(n31, n32, n33))

Result = ((F))×(C1U C2 U e)

Figure 2.16: Computing XOR result

 35

F
<<OR>>

C1:
((m11, m12, m13)
(m21))

C2:
((n11, n12, n13, n14)
 (n21,n22)
(n31, n32, n33))

Result = ((F))× (C1 U e)× (C2U e)
= ((F))U ((F)) × C1 U
((F)) × C2 U ((F))× C1× C2

Figure 2.17: Computing OR result

Here we put the non-leaf node (like F here) into the feature instances in order to

facilitate constraint checking. If one non-leaf feature F is supposed to be excluded in the

final feature instance, then its child-features should not be included correspondingly, and

we can eliminate those feature instances from the final result by identifying which feature

instance contains feature F, rather than by tracking down all its child-features laboriously.

2.4.4 A Generic Feature Modeling Environment (GFME)

We use GME [ISIS, 01] to build GFME. Figure 2.18 provides the meta-model of

the normalized feature model. Each feature atom in the meta-model contains an attribute

called the containment-role, which represents the containment relationship between this

feature and all of its child-features (XOR, OR, AND). Additionally, the connection Has-

Feature represents the association between the parent-feature and one of its child-feature

as optional or mandatory, which is tagged by the boolean variable isMandatory. The

attribute containment-role together with the HasFeature connection constitutes the

typical feature model representation to describe the commonalities and variabilities of

 36

feature model representation to describe the commonalities and variabilities of system

configuration. On the other hand, the other types of connection like mapping, interaction

and mutual-Inc in the meta-model denote the various kinds of feature interactions

[Straeten, 01]. Thereafter, the proposed algorithm will be applied over normalized feature

diagrams based on the meta-model as illustrated in Figure 2.18.

Figure 2.18: Meta-model of normalized feature model

GFME provides the modeling environment for building feature diagrams with the

structure as described in Figure 2.18. Figure 2.19 provides the screenshot of the GFME.

 37

Figure 2.19: Generic Feature Modeling Environment (GFME)

Note at the lower-right corner is the interface to specify such attributes as the relationship

with its child-nodes for a node under focus (here TransactionSubsystem) in the environ-

ment. In the same way, we can specify the attributes for those connections between fea-

ture nodes. The dashed lines denote the various kinds of dependencies or constraints to be

enforced between feature nodes. Currently we just generate the set of feature instances

from the feature diagram satisfying all specified constraints as illustrated in Figure 2.20.

With full control of the interpretation process (i.e., writing interpreter code via BON

API), we can generate application code from feature diagrams on demand.

 38

<?xml version='1.0' encoding="utf-8" ?>
<!--Feature Modeling: generated automatically by feature
metamodel interpreter @2003/5/23,15:3-->
<architecture_component>
 <system_name>Bank</system_name>
 <case>
 <component>CustomerValidationServer</component>
 <component>CashierValidationServer</component>
 <component>AccountDatabase</component>
 <component>DeluxeTransactionServer</component>
 <component>TransactionServerManager</component>
 <component>ATM</component>
 <component>CashierTerminal</component>
 </case>
 <case>
 <component>CustomerValidationServer</component>
 <component>CashierValidationServer</component>
 <component>TransactionServerManager</component>
 <component>ATM</component>
 <component>CashierTerminal</component>
 </case>
 <case>
 <component>CustomerValidationServer</component>
 <component>CashierValidationServer</component>
 <component>EconomicTransactionServer</
component>

 <component>TransactionServerManager</component>
 <component>ATM</component>
 <component>CashierTerminal</component>
 </case>
 <case>
 <component>CustomerValidationServer</component>
 <component>AccountDatabase</component>
 <component>DeluxeTransactionServer</component>
 <component>TransactionServerManager</component>
 <component>CashierTerminal</component>
 </case>
 <case>
 <component>CustomerValidationServer</component>
 <component>TransactionServerManager</component>
 <component>CashierTerminal</component>
 </case>
 <case>
 <component>CustomerValidationServer</component>
 <component>EconomicTransactionServer</component>
 <component>TransactionServerManager</component>
 <component>CashierTerminal</component>
 </case>
</architecture_component>

to be continued in the right pane

Figure 2.20: Feature instances generated from feature model

2.5 Aspect-Oriented Generative Domain Modeling for Multi-Stage Generative Com-

ponent Assembly

As is mentioned in Section 2.3.6, the UniFrame uses GDM to capture the domain

knowledge and to elicit assembly rules; the GDM includes 1) the solution space which

contains the implementation components, and 2) the problem space which is used for ex-

ternal users to query component information and order component assembly.

2.5.1 Specification of components in UniFrame GDM

2.5.1.1 Two-Level Grammar

The components in UniFrame are specified using the formalism of Two-Level

Grammar (TLG) [Bryant, 02] as is detailed in the following section. The specification in

 39

TLG provides flexibility in translating TLG specification to other representations, such as

other formal specification languages like the Vienna Development Method (VDM) [Lee,

02], or application code [Cao-c, 02]. TLG contains two context-free grammars, one de-

scribing type domains and the other describing rules/operations. Note it is not required to

have both levels. Below is a simple exemplar TLG specification.

class Identifier-1
 Identifier-1,… Identifier-m1 :: DataType1; DataType2;…;
 DataType-n1.
 Function-signature-1,..Function-signature-m2 : function-call-1,
 functi
end class Identifier-1.

on-call-2,…, function-call-n2.

The line containing “::” denotes the first-level type domain definition, for which the

right hand side of “::” provides the type (which is called a meta-type) while the left

hand side provides the variable name. Note the right hand side may specify multiple

types at the same time, which is delimited by “;”;the left hand side may also have multi-

ple variables separated by “,”, which are of the same meta-type as defined on the right

hand side. Also note the meta-type may form a hierarchy (meta-type hierarchy). For ex-

ample, BankOperation may be the meta-type of Withdraw operation, while Service may

be the meta-type of BankOperation. Consequently, Service is also regarded as the meta-

type of Withdraw.

The line containing “:” denotes the definition of second-level rule/operation (also

called hyper-rule) over the first-level type domains. ‘;’ can be used in the right hand side

of “:” to delimit multiple rules which share the same function signature on the left hand

side. Note both the first-level and second-level may contain multiple (including zero)

sentence as opposed to just one sentence of each in the above example.

 40

2.5.1.2 Component Description Language

Component Description Language (CDL) 16 is used in the problem space of GDM

to specify the components, their required and/or provided services in a way to achieve

maximal combination, minimal redundancy, and maximum reuse (as mentioned in section

2.3.2) as the result of aspect-oriented generative domain modeling. The CDL is also used

as a guideline for implementation of components by different vendors. Below is the CDL

template.
component <componentname>
 <DomainVariable1>,..<DomainVariable-m> ::
 <DomainType-1>; <DomainType-2>;…; <DomainType-n>.
 [requires <Domain-Specific-Service>: function-call-11,
function-call-
 12,…, function-call-1n.]
 [provides <Domain-Specific-Service>: function-call-21,
function-call-
 22,…, func
end component <componentname>

tion-call-n.]

The first level of CDL provides the type-hierarchy of domain variables. The re-

quires/provides specification constitutes the second level. For the requires specification,

the right-hand side details the requirement; for the provides specification, the right-hand

specification further specifies the semantics of the provided services.

2.5.2 Separation of concerns in GDM

Consider the following two component specifications in the GDM problem space.

Component BankServer
provides AccountManagerment:

applies AccessControl
end Component

Component BankClient

16 Note here CDL refers to both Component Description Language and Component Specification in CDL.

 41

requires AccountManagement:
 uses RMIServer applying QoSMonitor
end Component

In the BankServer specification, the provided service AccountManagement uses Access-

Control. But as the business rule is subject to change, the BankServer may lift the Ac-

cessControl or enforce other type of controls, either of which will reduce the reusability

of original BankServer implementation component. In the BankClient specification, the

“RMIServer” and “QoSMonitor” that are required for a server-side AccountManagement

service represent the glue/wrapping logic, which tangles the BankClient component and

also reduces its reusability as glue/wrapping requirements change.

AOP provides a means to capture crosscutting aspects in a modular way with new

language constructs, and also provides a join model to hook the aspects with the base

program. This makes us believe that augmenting the component specification approach

with aspect orientation can separate those crosscutting assembly-related aspects of com-

ponents. The similar idea has been proposed in [Hunleth, 01] to augment CORBA IDL

with aspects using AspectIDL, while our approach is based on TLG CDL. Those aspects

do not need to be implemented by vendors. The separation will refine the granularity of

GDM, and contribute to the maximal combination, minimal redundancy, and maximum

reuse, which are the desired properties of implementation components [Czarnecki, 00] in

the solution space of GDM. Consequently, the component assembly process evolves into

an aspect weaving process. Table 2.2 provides the tentative catalog of assembly related

concerns.

 42

Table 2.2: Assembly related aspects

Property Type Property Attributes
Business rule enforcement

Specific technology instrumentation
Pre/post condition

Functional

…..

Profiling
QoS Validation

QoS Instrumentation

Non-Functional

…

Figure 2.21 illustrates the aforementioned idea. The arrow ending with a diamond

figure represents the include relationship in the standard UML notation. Separation of

concerns [Parnas, 72] will be introduced into the domain analysis phase, the output of

which is GDM. GDM includes the concerns identified at the domain analysis phase

(which are also called early aspects17), and those aspects are collectively stored into a

repository called the aspect library. This aspect library corresponds to the configuration

knowledge in GDM. Upon an ordering request over GDM problem space, the CDL in the

problem space will be weaved with involved assembly aspects into a glue/wrapper code

generation specification, which by referencing the implementation components, will be

used to generate final glue/wrapper code.

17 http://early-aspects.net/

 43

Domain Analysis

GDM

CDL AUL

Weaver Aspect
Library

Component
Repository

guideline

Glue/Wrapper Code

select
reference

select
reference

Figure 2.21: Aspect-Oriented Generative Domain Modeling (AOGDM)

2.5.3 Generative multi-stage component assembly

Before we describe the component assembly process in detail in section 2.5.3.3,

we provide the related specification definitions.

2.5.3.1 Specification of aspect and the use of aspect

As the aspects as indicated in Figure 2.21 are separately stored as opposed to in

such AOP language as AspectJ [Kiczales, 01], where aspects are defined closely bounded

to a base program (the join point is specified syntactically based on the base program),

there needs to be a means to define a join point model to hook the aspects to the targeted

 44

program, so as to apply the related advice provided in aspect defintion to the targeted pro-

gram.

Aspect Description Language (ADL)18 is defined as follows:

Aspect <aspectname>
 advises: <Meta-type>.
 [before: <advice>.]
 [after: <advice>.]
 end Aspect <aspectname>

The name enclosed with “<>” represents grammar variable, which will be exemplified

below. The “[]” is used to delimit a part that is optional. Those notations apply to the fol-

lowing AUL and CDL. The <Meta-type>, which is defined as in section 3.1, is used to

specify the types of domain services that this aspect can be applied to. The advice follow-

ing the directive before/after provides the pre/post actions to be performed or pre/post

conditions to be enforced before/after the domain services, which can be used as such

leverages as temporal dependency specification, tracing/QoS code instrumentation. For

example, in [Ubayashi, 02], before/after advices are used to specify rules for model

checking. Consequently, the aspect library represents a collection of assembly rules.

Aspect Usage Language (AUL)19 is defined as follows:

apply <aspectname> on <type> [when <relational expres-
sion>]

<aspectname> corresponds to an assembly-related aspect, which already provides a

means to specify assembly rules as described in the preceding paragraph. The <type> has

to be consistent with the applicable <metatype> in the ADL of <aspectname>. By consis-

tent we mean the <metatype> as in the ADL of <aspectname> should reside at the root

18 Note here ADL refers to both Aspect Definition Language and the Aspect Definition specified in ADL.
19 AUL refers to both Aspect Usage Language and the Aspect Usage Specification in AUL.

 45

position of some meta-type hierarchy (see section 3.1 for definition), where <type> is

also part of it. The when directive in AUL further specifies the scenarios using relational

expressions, under which this aspect can be applied. It’s quite straightforward that AUL

can be used in a product ordering specification as indicated in section 2.1. Note the defi-

nitions of ADL and AUL are inspired by [Duclos, 02], where non-functional aspects are

separated from components themselves to increase the component (and non-functional

aspect) reuse, and the non-functional aspects are handled with similar language constructs

as ADL and AUL described here.

2.5.3.2 Aspectual component as a paradigm for component assembly

The Aspect Library as shown in Figure 2.21 captures the general business and

technology requirements in terms of assembly-related concerns. However, a component

assembly process indicates the specific scenario of behaviors in terms of aspect usage

(the use of those general aspects). Of course the component assembly process cannot be

realized simply via a single AUL, as a component captures groups of behaviors. But as-

pect weaving does offer a means of component assembly in the sense that weaving is also

one kind of assembly. So a means is needed to provide another reusable aspect definition

model and join point model to the weave aspects and targeted program so as to realize

component assembly.

We use the aspectual component model as described in Section 2.3.3.1 for com-

ponent assembly. However, the original aspectual component is in Java, while here it is a

language-independent specification in TLG. The connector specification classifies server

components’ related services into some category based on meta-type. The connector

 46

specification also includes related operations associated with the meta-type. The meta-

type can be regarded as one kind of join point in AOP, while the related operations in

connector specification provide advice. The meta-type, in an aspectual component, is

how the client and server component get hooked up; the join point model to be used is

again type-based as in the preceding section.

 We integrate the ideas into a process diagram in Section 2.5.3.3, which is reified

by an example in Section 2.5.3.4.

2.5.3.3 Overall picture

 Figure 2.22 provides the multi-stage component assembly process. Stage 1 is

mainly about the introduction of GDM (from domain analysis), which includes CDL in

the problem space and Aspect Library as configuration knowledge. Stage 2 involves the

weaving of the aspect specification into component specification for each components

involved in the assembly process. Stage 3 illustrates the process of the component assem-

bly specification generation based on the aspectual component model. This stage involves

a connector repository, where the connector specifications will be registered, and the as-

pectual component will initiate a query into the connector repository to find the matching

connector specification based on meta-type consistency, and to apply the associated ad-

vice thereafter. The connector specification is translated from the CDLs of the server

component (service provider) and the aspectual component specification is translated

from a client component (service consumer). Glue/wrapper code will be synthesized in

the final stage from the assembly specification, which uses the referencing to the compo-

nent repository

 47

Figure 2.22: Multi-stage gluing/wrapping

 48

(which stores the set of component UMM specifications retrieved by the discovery ser-

vice in UniFrame).

To help clarify the above concepts, a simple generative multi-state component as-

sembly example is provided in Appendix A, demonstrating how the aspectual component

approach can be adapted to the component assembly process. Note the assembly para-

digm described in Appendix A is following a client/server architecture, whereby the cli-

ent component (service consumer) may be translated into aspectual component specifica-

tion. In the event the components to be assembled are not following that kind of architec-

ture, the ordering specification itself needs to be translated into an aspectual component

specification, and then apply the similar assembly process as shown in Figure 2.22.

2.6 Discussion

UniFrame, the motivation project of the presented component assembly approach

in Section 2.5, aims at automating the process of integrating heterogeneous components

to create distributed systems that conform to quality requirements. GP is the underpin-

ning solution to fulfill this vision. In order to realize the vision of GP for highest level of

automation, during domain engineering phase, the creation of the domain model may be

applied using MIC in the similar way to GFME presented in Section 2.4. Based on the

component assembly approach presented in Section 2.5, Table 2.3 describes the genera-

tive programming in UniFrame.

 49

Table 2.3:Generative Programming in UniFrame

Generative Programming UniFrame
Feature modeling GFME

Components are generated in
domain implementation phase

Components are implemented by vendors. Generation
only occurs at system level

Configuration Knowledge Aspect Library
Mapping of problem space to

solution space
Resource Discovery Service to search components

based on component specification
Domain Specific Language

(DSL)
CDL, AUL, ADL

Generator Aspect Weaver

2.7 Summary

This chapter provides a synopsis of different component models and state-of-the-

art component-based software development techniques. In particular, the UniFrame pro-

ject is introduced, with its GDM and component assembly principles elaborated, which

also showcases the synthesis of the component-based software system development ap-

proaches described in this chapter. While the next two chapters address the issues of WS

technology which represents an evolution of the component software paradigm, the prin-

ciples and approaches has their roots in UniFrame, and apply to UniFrame reciprocally.

 50

CHAPTER 3

MODEL DRIVEN REENGINEERING LEGACY SOFTWARE SYSTEMS TO WEB
SERVICES

This chapter presents a model-driven approach for reengineering legacy software

systems to WS applications. This chapter begins with the motivation for a model-driven

approach for reengineering legacy software systems, then describes the approach of mar-

shaling and unmarshaling models using ER models for eliciting WS meta-models in an

automatable, systematic manner as opposed to an ad-hoc manner. The WS meta-model in

turn is used for creating WS modeling environment based on the GME for WS code syn-

thesis.

3.1 Motivation

3.1.1 Definition of legacy software system

With the rapid advancement of software technology, more and more software sys-

tems developed with the state-of-the-art technologies of yesterday are becoming legacy

software systems of today. Specifically, we define legacy software in a comparative

manner, i.e., the software systems are legacy if the languages, models or platforms they

are developed with can be replaced with new languages, models or platforms of advanced

features and improved capabilities. Legacy software systems are heterogeneous in lan-

guage and platform. With the wrapping of WS, legacy software systems can be reused

across heterogeneous distributed platforms.

 51

3.1.2 Approaches for using Web Services as a wrapper

There are several options for reengineering legacy software to WS:

 Manually port original software source code to WS applications. This is an ex-

pensive solution. Also WS code, such as WSDL, is verbose, and coding WSDL

manually is error prone.

 Language tool based, in which the legacy software package is recompiled to gen-

erate WSDL. Many tools such as AXIS20 and the Microsoft .Net framework pro-

vide the function of generating WSDL from implementation code (such as Java

and C#) and vice versa. Such tools leverage compiler technology to generate

WSDL from other programming languages. The WSDL in turn can be used to

generate client side stub code for the client to call the services exposed by legacy

software systems [Graham,02]. However, this language tool based solution re-

mains to be language-dependent. With the variety of legacy software systems, a

language neutral solution is required in order to sufficiently handle the

reengineering of legacy software systems to WS.

As an extension to the preliminary work on a model-driven approach to WS development

[Cao, 04], this chapter presents a model-driven approach for reengineering legacy soft-

ware systems to the WS applications, in which a model plays a central role for migrating

legacy software systems to WS implementations. A model is usually represented in

UML21, or any other abundant domain specific visual language (as can be seen in

JVLC22), which represents the structural and contextual information of a legacy software

system in a language neutral style without being tied to implementation specifics. The

20 http://ws.apache.org/axis/
21 UMLTM - Unified Modeling Language - http://www.omg.org/uml
22 JVLC - Journal of Visual Languages and Computing-http://www.elsevier. com/locate/jvlc

 52

model-driven reengineering approach is also based on the observation that legacy soft-

ware systems are usually documented in a visual modeling language; models can also be

used as first-class assets in SOA (e.g., model as the basis for service discovery in [Haus-

mann, 04]).

To apply the model-driven approach for reengineering legacy software systems to

WS, a model should play a role beyond the conventional design and documentation ca-

pacity, i.e., a role for WS code generation directly to resolve the manual porting problem

as described above. Usually UML-based code generation is based on a static mapping

from the UML profile [Frankel, 03], which lacks flexibility during the code generation

process. As such, we use MIC for building a WS modeling environment and conse-

quently for WS code generation.

3.1.3 Problems for applying MIC to reengineering legacy software to WS

While MIC offers an automatable and language neutral approach for reengineer-

ing legacy software to WS, the starting point of MIC - the construction of the meta-model

has to be a manual process. Previous work on WS modeling [Cao-c, 03] has revealed that

with the increasing complexity of the modeling target, the construction of the meta-model

is subject to being ad-hoc and error-prone. With the modeling assets (UML or other do-

main specific visual modeling language) already abundantly available as part of the leg-

acy software (which we term legacy model), it is desirable to derive the meta-model from

the legacy model in a systematic, automatable process as opposed to being ad-hoc and

error-prone. However, the current meta-modeling languages lack adequate modularity

support for large scale meta-model construction, which nevertheless is widely existing in

 53

general programming languages. As a result, the construction of a meta-model remains an

art rather than a science.

Therefore, the contribution of this chapter is twofold:

1) the elicitation of a meta-model from a legacy model in a systematic, automatable

process, and consequently

2) the creation of a domain-specific WS modeling environment for WS code genera-

tion, as well as the treatment of WS semantic concerns from a model-driven per-

spective.

3.2 Marshaling and Unmarshaling Models Using Entity-Relationship (ER) Model

The elicitation of a meta-model from UML or other domain-specific modeling no-

tations can be done on a per source model basis. However, with the constant emergence

of new modeling notations, the elicitation approaches will become ad-hoc and not reus-

able. Moreover, there is a need to converge the diversified modeling assets for modeling

tool integration23. Therefore, we need to encode the diversified models with a common

representation, such that different modeling notations can transfer to and from it, thus

modeling assets can be exchanged and used across different modeling tools. We [Cao-b,

05] have referred to these modeling notation transferals as marshaling and unmarshaling,

respectively. The term marshaling comes from the distributed computing scenario where

heterogeneous data types are always translated into some common data type over the

network so as to be consumed at another end of the distributed environment, where the

common data type is unmarshaled again into another environment-specific data type.

Comparatively, the concept of marshaling and unmarshaling models refers to transform-

23 Interview with Keith Short, http://www.theserverside.net/talks/ library.tss#KeithShort

 54

ing a model to an intermediate common semantic form, which is reinterpreted in another

modeling environment/tool. This intermediate common semantic form is in a similar vein

to ACME [Garlan, 00], which is an intermediate form for exchanging software architec-

ture description languages across different software architecture design tools. Moreover,

with the heterogeneity of models at different meta-levels (not only model level but also

meta-model level) [Frankel, 03], marshaling and unmarshaling of models can be per-

formed at different levels: horizontally, meta-model level and model-level; vertically,

meta-model to/from model as is illustrated in Figure 3.1.

m e t a - m o d e l

m o d e l

Figure 3.1: Marshaling and unmarshaling models at different levels: the arrow represents
marshaling/unmarshaling process

3.2.1 Rationales

Here we use the ER model [Chen, 76] as the intermediate common semantic form

for marshaling and unmarshaling models24. The rationales are as follows:

 Sufficiency. Even though UML is widely adopted in software modeling, which

seems to justify the use of UML as a common model for exchanging model assets

24 Note that the ER model is not intended to replace the existing modeling language such as UML or Petri

Nets – those modeling languages have their own advanced features for a specific domain to model. Here
the ER model is chosen as an intermediate form only for exchanging models of a close type or serving a
close purpose but with variant notations across different modeling tools and environments.

 55

across modeling facilities, UML is not convenient for model serialization, thus

not fit for modeling asset exchange, reuse and evolution. In fact, the object dia-

gram [Booch, 99], for which UML is used to capture and store the snapshot of the

software system state, is represented virtually in an Entity (object) and Relation-

ship (links) model. Moreover, the UML modeling language has its roots in the ER

model, and the latter is already widely used as the foundation for CASE tools in

software engineering and repository systems in databases25.

 Necessity. As is illustrated in Figure 3.1, not only models, but also meta-models

are in need of marshaling and unmarshaling. Therefore, the intermediate model

should be expressive enough to be at the meta-meta model level in the meta-level

stack [Frankel, 03]. The meta-meta-model is described by the Meta Object Facil-

ity (MOF)26, which is a set of constructs used to define meta-models. The MOF

constructs are the MOF class, the MOF attributes and the MOF association.

These constructs correspond to an ER representation (by using an Entity to repre-

sent a MOF class), which indicates that the ER representation is semantically

equivalent to MOF fundamentally. Therefore, the ER representation is the right

vehicle to play the dual roles of marshaling both models and meta-models. Also,

other non-UML based languages, even though not as popular, are abundantly pre-

sent, for which UML is not an omnipotent cure.

25 http://bit.csc.lsu.edu/~chen/chen.html
26 Meta-Object Facility - http://www.omg.org/technology/documents/formal/mof.htm

 56

3.2.2 Overview of the approach

The work presented in this chapter aligns with the vertical direction which is fur-

ther illustrated in Figure 3.2, i.e., marshaling models to the ER model, then unmarshaling

the ER model to the GME meta-model. The gray area in Figure 3.2 represents the MIC

paradigm. To be specific, in the following section, we will marshal a UML class diagram

for Web Services Description Language (WSDL) to the GME meta-model, then create a

WS

 M odel

E R M odel

dom ain specific m odelM 1:

M 2:
1 . m arsha l G M E M eta- M odel

M 3:

2. unm arsha l

Legacy
so ftw are W S A pp lica tion

reeng ineer

M IC

3

Figure 3.2: Eliciting Meta-models from model via marshaling and unmarshaling models
using ER model

modeling environment based on the meta-model for WS code generation. Therefore, leg-

acy software systems can be reengineered to the WS application automatically with a

language neutral approach. We also show the generality of this approach: even though the

scope is within the vertical direction, the approach can also be applied for horizontal mar-

shaling/unmarshaling using the ER model; even though the source model is the UML ob-

 57

ject-oriented model, it is not tied to this single kind of source model and can be applied to

other domain-specific visual modeling languages as well.

3.3 Reengineering Legacy Software to Web Services

In order to reengineer legacy software to WS, we need to capture 1) the WS tech-

nology domain knowledge; 2) the original legacy software business domain knowledge;

and 3) original implementation technology information. This categorization of technol-

ogy domain knowledge and business domain knowledge has been described in [Zhao,

03]. Figure 3.3 describes the legacy banking application information, including its busi-

ness domain knowledge (the first two paragraphs) and its original technology domain

knowledge (the last paragraph). Note as WS is used as wrapper for original technology

domain knowledge as well as the original business domain knowledge, rather than replac-

ing the original technology, we treat the original domain knowledge as the part of busi-

ness domain knowledge in the remaining part of the paper for simplicity.

3.3.1 Marshaling legacy software model to ER model

In order to elicit the banking domain WS meta-model, we need to first merge the

WS technology domain information (as illustrated in Figure 2.8) with the business do-

main information. To that end, we treat the WS technology domain as the dominant do-

main during the merge process, with the business domain knowledge as the adjunct do-

main being appended to the marshaled model from the technology domain model. As

such, the marshaling process as illustrated in Figure 3.1 can be decomposed into the mar-

shaling type A for dominant domain and type B for adjunct domain together with a merge

 58

 A bank provides the service for users to set up ac-
counts. Account information includes personal data in-
cluding Name, SSN, phone number, address, and account data
including Account Number, PIN, Transaction Record, Bal-
ance. There are two types of accounts: checking account
and savings account.
 For the bank side, it provides such services as: Ac-
count Verification, Account Query, Deposit, Withdraw, and
Transfer.
 The banking service implementation may use such tech-
nology as RMI27, J2EE28, and CORBA29. Also it will enforce
some Quality of Service (QoS) requirements such as Avail-
ability, Dependability, Capacity.

Figure 3.3: A banking example

step as is illustrated in Figure 3.4.

B u s in e s s D o m a in
K n o w le d g e

T e c h n o lo g y M o d e l

P a r t ia l E R
M o d e l

C o m p le te E R
M o d e l

M e r g e

M a r s h a l A

M a r s h a l B

Figure 3.4: Stepwise marshaling

27 RMI - Remote Method Invocation: http://java.sun.com/products/jdk/rmi/index.jsp
28 J2EE - Java 2 Enterprise Edition: http://java.sun.com/j2ee/
29 CORBA® - Common Object Request Broker Architecture: http://www.omg.org/corba/

 59

Table 3.1 illustrates the marshaling rules based on different marshaling types. Note that

one of the essential characteristics of a meta-model is that it treats not only the models,

but also the inter-relationships among models as first-class entities. Therefore, for mar-

shal type A, the different type of relationships between classes will be mapped to the Re-

lationship construct in the ER model, while each class is represented as an Entity.

Table 3.1: Marshaling rules

Type Rule

Marshal A aggregation, association, generalization, and dependency => Relationship
 class=> Entity

Marshal B domain analysis and mapping

Figure 3.5 illustrates the resultant ER model after marshaling the WS class dia-

gram based on this rule. Each diamond represents a type of relationship in the original

class diagram. Note we ignore type in the ER model of Figure 3.5 because we can put the

type directly as the attribute of the part element. However we will not include the attrib-

utes to the entities and relationships in the ER representation here, as the focus of this pa-

per is about the model of marshaling and unmarshaling structurally; the attributes will be

annotated in the GME meta-model and are shown later. For marshal type B, a domain

analysis phase [Czarnecki, 00] is needed to associate the business domain information to

the technology domain information. Specifically, the different banking services described

in Figure 3.3 can be treated as different types of operations in WSDL, while different

banking service implementation technology and QoS requirements can be associated to

 60

Figure 3.5: Marshaling WSDL model to ER model

bindings in WSDL as a reification of operations. Account information and account type

information can be treated as messages in WSDL. Figure 3.6 illustrates in detail the resul-

tant ER model after annotating the business domain knowledge (using either generation

relationship or association relationship) to the WSDL ER model illustrated in Figure 3.5.

By using the ER model as the intermediate form for marshaling, different types of do-

main knowledge can be merged incrementally without obfuscating each other, which

provides a separation of concerns toward domain-specific model refinement. Also with

the non-invasive merge process, the business domain semantics are reified with technol-

ogy semantics while the business domain semantics are kept unchanged.

 61

Figure 3.6: The ER model of Banking Service WSDL: the three parts enclosed with
dashed line represent the extended part to the WSDL model.

3.3.2 Unmarshaling ER Model to GME Meta-model

In the GME meta-model, the containment relationship is represented by using a

model element (stereotyped with <<model>>), which, in contrast to an atom element

(stereotyped with <<atom>>), can contain other modeling elements. Also the contained

elements can be promoted as ports of the model to have direct connections with

external modeling elements. Additionally, GME uses a root model as an entry point of

access to all the modeling elements. Also, the relationship of ER is represented in GME

as a first-class modeling element, connection (stereotyped with <<connection>>), with a

 62

connector in the form of a dot to associate this relationship with two modeling elements

(entities).

The unmarshaling from the ER model to the GME meta-model is based on the re-

lationships in the ER representation, as is illustrated in Table 3.2.

Table 3.2: Unmarshaling rules: the relation notation is consistent with that in Figure 3.5

Rule Number Relationship type GME Metamodel element

1

2

3

1). A contains B. In this case, A can be modeled as a model element in GME con-

taining B.

2). B is specialized from A. In this case, A is rendered by an abstract FCO (First-

Class Object, tagged with <<FCO>>, represents an abstract generalization of

other modeling constructs), a modeling element to be used as an abstract in-

 63

terface in GME, and B is represented as an inherited class of that FCO. Note

there are two special treatments here: first, for the input/output elements of

Figure 3.6, they are only used to tag the connection (named either “input” or

“output”) between message entities and its interconnecting entities in GME;

second, the generalization relationship between binding and portType is actu-

ally treated as an association when modeling in GME, because the binding en-

tity actually attaches values of the chosen protocol to the portType in WSDL

rather than in the real sense of inheritance.

3). B is associated to A. In this case, a connection can be added to be associated

with the A and B representations in GME. The connection element can be

named with respect to A’s or B’s properties as a kind of tag, e.g., the tag can

be named as the combination of both A’s name and B’s name. Note when the

situation as described in case 2 applies, then this tag should be named as in

case 2.

Figure 3.7 shows the meta-model created by unmarshaling the ER model in Fig-

ure 3.6 strictly observing the above unmarshaling rules. The seven boxes with bold bor-

ders correspond to the seven WSDL entities in Figure 3.5 and 3.6, with WebService cor-

responding to the service entity. The boxes in Figure 3.7 also contain attributes for the

related models to be instantiated in the modeling phase. The four areas designated by four

bold dashed circular lines correspond (from right to left) to the extension parts 1-4 in

Figure 3.7. It can be seen from Figure 3.7 that the meta-modeling language lacks the

modularity that programming languages have, thus the construction process of a complex

 64

Figure 3.7: The meta-model of banking domain WSDL in GME

meta-model is error-prone without a systematic, automatable treatment.

3.4 The Web Services Modeling Environment

After a meta-model is derived by marshaling and unmarshaling models, a domain

specific modeling environment (which is also a crucial part of MIC) can be created based

upon the meta-model, as is indicated in Table 2.1. Figure 3.8 shows the screenshot of the

banking-domain WS modeling environment based on the meta-model illustrated in Fig-

ure 3.7. The lower-left corner provides the modeling elements that can be dragged and

dropped in the upper-left pane for constructing a banking service model. The names of

the models in the lower-left pane represent the meta-model names (kind names); when

 65

Figure 3.8: The banking domain-specific WS modeling environment

those models are dragged to the above pane, the model name can be changed to reflect

the meaning of the model in the domain-specific context, which we call a context name.

Furthermore, the domain-specific model can be traversed based on the meta-model and

interpreted in terms of code generation using the GME Builder Object Network (BON)

framework [ISIS, 01], which is illustrated in Figure 3.9. For saving space, Figure 3.9

only shows the interpreter code for generating the message and portType of WSDL.

Other part of WSDL can be generated in a similar way. A snippet of the WSDL code

generated for the banking service embedded with the QoS parameter extension is shown

in Figure 3.10. Notice the bold-font part of the WSDL code in Figure 3.10 includes the

QoS and ontology attributes of WSDL, which may be used for WS filtering if QoS re-

quirements or domain specific requirements are included for service discovery.

 66

const CBuilderModelList *root
 = builder.GetRootFolder()->GetRootModels();
POSITION pos = root->GetHeadPosition();
ASSERT(pos->GetCount()==1);
 //to ensure this model is representing just one WSDL

CBuilderModel *webserv = pos->GetHead();
 //get the handle to the WebService model
ASSERT(webserv->GetKindName()=="WebService");

//WSDL message part
const CBuilderAtomList *messages = webserv->GetModels("message");
pos=messages->GetHeadPosition();
CBuilderAtom *oneMessage;
while(pos)
 {
 /*
 traverse each message model and generating code
 <message>... </message>
 for each message model
 */

 oneMessage=messages->GetNext(pos);
 const CBuilderAtomList *accounts
 =oneMessage->GetAtoms("PersonalAccount");
 ...
 }

//WSDL portType part
const CBuilderAtomList *portType = webserv->GetModels("portType");
pos=portType->GetHeadPosition();
ASSERT(pos->GetCount()==1);
 //to ensure only one portType element in WSDL
CBuilderAtom *oneportType;
oneportType=portType->GetNext(pos);
…..
}

Figure 3.9: WSDL code synthesis using GME BON API

 67

<message name="checking">
<part name="user_ident" type="identity"/>
<part name="p1" type="checking"/>
</message>

<message name="savings">
<part name="user_ident" type="identity"/>
<part name="p1" type="savings"/>
</message>

<message name="checking_savings">
<part name="user_ident" type="identity"/>
<part name="p1" type="checking"/>
<part name="p2" type="savings"/>
</message>

<portType name="BankingServices">
 <operation name="w"

ontology="Banking:withdraw">
 <input message="checking"/>

 <output message=""/>
 </operation>

 <operation name="d"
ontology="Banking:deposit">

 <input message="checking"/>
 <output message=""/>
 </operation>

 <operation name="v"
ontology="Banking:deposit">

 <input message="checking_savings"/>
 <output message=""/>
 </operation>

 <operation name="q"
ontology="Banking:query">

 <input message="savings"/>
 <output message=""/>
 </operation>
</portType>

(to be continued in the right pane)

<binding name="J2EE_Banking"
type="BankingServices">

 <soap:binding style="J2EE"
transport="http"
QoS:portability="0.544400">

</binding>

<binding name="CORBA_Banking"
type="BankingServices">

 <soap:binding style="CORBA"
transport="IIOP"
QoS:turn-around-time="10.35">

</binding>

<binding name="RMI_Banking"
type="BankingServices">

 <soap:binding style="RMI"
transport="http"
QoS:dependability="0.34">

</binding>

<service name="My Bank">
 <port name="p1"

binding="J2EE_Banking">
 <soap:address location="URL1"/>
 </port>

 <port name="p2"
binding="CORBA_Banking">
<soap:address location="URL2"/>

 </port>

 <port name="p3"
binding="RMI_Banking">
<soap:address location="URL3"/>

 </port>
</service>

Figure 3.10: The WSDL for a banking WS

3.5 Model Driven Approach to Enrich Web Services Semantics

Current WS standards mainly embrace the semantics of processes at the collabo-

rating syntactic interface level. WSDL only exposes distributed object services, while

 68

such process behavior aspects as ordering, and dependency are not well specified in the

existing WSDL standard. The model-driven approach can play a unique role in enriching

the WS semantics:

 OCL (Object Constraint Language)30 to enrich WS semantics at a high level

OCL is used to complement the semantic representation for UML. Likewise,

when the model is used to represent WS, OCL can be used to enrich WS seman-

tics indirectly at a higher level. For example, if we add into the banking case in

Figure 3.7 such requirement that “deposit and withdraw can only be applied to

checking account”, the specified constraints over withdraw and deposit operations

can be enforced in GME using the following MCL expression [ISIS, 01], an OCL

implementation in GME:

 connectedFCOs("src")->

 forAll(c|c. kindName()="checking")

Those constraints apply to both the withdraw atom and the deposit atom in Figure

3.7, which means those First Class Objects (referring to both entities and relations

in GME) that are connected with withdraw/deposit atoms are all of kind

"checking". Therefore, in the WS modeling environment as shown in Figure 3.8,

once a modeling entity of type other than “checking” is connected to with-

draw/deposit, an error message window will pop up.

 Meta-model as Ontology

A valid meta-model is an ontology, but not all ontologies are modeled explicitly

as meta-models [Ernst, 02]. This ideal has already been used in [Hausmann, 04]

for WS discovery. Comparatively, here we just output the meta-model informa-

30 http://www-3.ibm.com/software/ad/library/standards/ocl.html

 69

tion into the generated WSDL as ontology annotation to enrich the WSDL seman-

tic representation.

 Creating modeling language for enriching WS semantics

Assume there is an order restriction for those banking operations described in

Figure 3.7: both transfer and withdraw have to be preceded by a query operation;

the account verification comes after each of the other operations. Such models as

Finite State Machine (FSM) can be used to enrich WS semantics. Based on the

FSM meta-model as shown in Figure 2.6, a FSM modeling environment can be

created in addition to the WS modeling environment of the preceding section, as

shown in Figure 3.11. This environment can be used to generate operation order-

ing constraint code to be embedded in WSDL as shown in Figure 3.12. Note in

the generated state transition code in Figure 3.12, the condition attributes are sup-

posed to be customized in the specific banking behavior model before code gen-

eration, which for the sake of brevity are left empty here. The state transition

specification generated here may be used in guiding the WS consumption and

composition.

 70

Figure 3.11. Banking behavior model based on FSM meta-model

 71

<state>
 <state name= "Login" >
 <state name="Validation" >
 <state name="Query" >
 <state name="Deposit" >
 <state name="Transfer" >
 <state name="Withdraw" >
 <state name="Verification" >
</state>
<transition>
 <transition src="StartState"
 dst="Login" condition="">
 <transition src="Login" dst="Login"
 condition="">
 <transition src="Login"
 dst="Validation" condition="">
 <transition src="Validation"
 dst="Deposit" condition="">
 <transition src="Validation"
 dst="Query" condition="">
 <transition src="Deposit" dst="Deposit"
 condition="">

(to be continued in the right pane)

<transition src="Deposit"
 dst="Verification" condition="">
 <transition src="Query"

dst="Transfer" condition="">
 <transition src="Query"
 dst="Query" condition="">
 <transition src="Query"

dst="Withdraw" condition="">
 <transition src="Query"
 dst="Verification" condition="">
 <transition src="Transfer"
 dst="Transfer" condition="">
 <transition src="Transfer"
 dst="Verification" condition="">
 <transition src="Verification"
 dst="StartState" condition="">
 <transition src="Verification"
 dst="Verification" condition="">
 <transition src="Verification"
 dst="EndState" condition="">
 <transition src="WithDraw"
 dst="WithDraw" condition="">
 <transition src="WithDraw"
 dst="Verification" condition="">

Figure 3.12: Banking behavior model based on FSM meta-model

3.6 Related Work

This chapter presents both a novel model-driven approach in general and its novel

application to WS in particular. As such, the related work comes twofold.

3.6.1 Model-driven approach

For the model-driven approach aspect, we use the ER model for marshaling and un-

marshaling models. The related work in this regard includes:

 72

 MDA

MDA can assist in reengineering legacy software systems into PIMs. A

PIM can be mapped to software components on PSMs, such as CORBA, J2EE or

.NET. In this way, legacy systems can be reintegrated into new platforms effi-

ciently and cost-effectively [Frankel, 2003]. However, the core part of mapping

technology for MDA is either ad-hoc or pre-mature before MDA can be fully

adopted in industry. ER-based model marshaling and unmarshaling offers a p

tential solution to address this problem systematically. Another difference is tha

in MDA, the PIM is treated as the dominant model while here we treat the tech-

nology domain as the dominant model, with business domain knowledge (PIM

adjunct model in Section 3.

o-

t

) as

It has been observed that the ER representation has been adopted in defin-

ing the Knowledge Discovery Meta-Model (KDM)31 and Ontology Definition

Meta-Model (ODM)32 in OMG, which underscores the role that ER plays for

model marshaling and unmarshaling.

 Grammar Inference

The ER model, because of its powerful modeling capacity, can be used as an in-

termediate form for model-to-model and meta-model-to-meta-model exchange.

Because of the dual role that the ER model can play, it is treated as an intermedi-

ate form for model-to-meta-model elicitation, which is the theme of this disserta-

tion. This idea is very similar to grammar inference [Higuera, 2001], where a

31 http://www.omg.org/cgi-bin/doc?lt/2003-11-4
32 http://codip.grci.com/odm/draft/submission_text/ODMPrelimSubAug04R1.pdf

 73

grammar can be inferred from language examples. But the two approaches are

applied at different abstraction levels.

 XMI

XMI33 provides a standard mapping from MOF-based models to XML, which can

be exchanged between software applications and tools, and the XMI specification

is difficult to read by humans. In contrast, ER-based model marshaling and un-

marshaling represents a design-level approach for evolving design assets, without

being restricted to low-level syntactical data representation specifics, and the ER

representation is much more human comprehensible. Also, the XMI-based ap-

proach uses top-down mapping, and is coupled to the meta-model of the targeted

language; interchange format cannot be changed without changing the meta-

model. In contrast, the ER-based approach represents either horizontal mapping or

bottom-up mapping as is illustrated in Figure 3.1, without being tied to any meta-

model.

3.6.2 Modeling WS

We applied the model-driven approach to WS, specifically, MIC for WS code

generation automatically; Model-driven approaches for enriching WS semantics are also

identified.

In [Lopes, 03], MDA is used together with workflow technology for modeling and

composing WS. But the authors do not provide a guideline as to how to create the meta-

models. Also the mapping from PIM to PSM is not detailed. In contrast, our meta-modeling

approach is sufficiently complete and general as to be applicable to other aspects of WS

33 XMI - XML Metadata Interchange - http://www.omg.org/technology/ documents/formal/xmi.htm

 74

such as WS orchestration code generation. [Sivashanmugam, 03] describes an approach of

adding semantics to WS by adding ontology attributes to both WSDL and UDDI, which

includes pre-condition and effect specification. We applied ontology annotation to WS as

well, and we put the pre-condition and other effect specification at the meta-model level.

In [Mantell, 03], an MDA approach is used for BPEL4WS code generation from a UML

design. This approach uses XMI processing technology for UML model exchange. Com-

paratively, the XML representation for the ER model is much simpler and easier to process

in our approach. Code generation in [Mantell, 03] is based on the UML profile mapping,

which is not as flexible as a generator-based approach in our case.

The UniFrame project ([Raje, 02]; [Olson, 05]) has a more comprehensive applica-

tion of the model-driven approach. UniFrame aims at creating a framework for seamless

integration of distributed heterogeneous components. In UniFrame, the model-driven ap-

proach is applied for domain engineering, and for creation of Generative Domain Models

(GDMs) (Czarnecki, 2000), which are used for eliciting rules to generate glue/wrapper

code for assembling distributed heterogeneous components. In contrast, the scope of

glue/wrapper code generated here is specific to WS code, which has not been addressed by

UniFrame.

3.7 Summary

With Web Services (WS) as a wrapper, legacy software systems can be reused

and integrated beyond enterprise boundaries across heterogeneous platforms. This chap-

ter has explored in detail a model-driven approach to reengineer legacy software systems

to WS applications using a systematic, automatable process, which includes: 1) the meta-

 75

modeling process using ER-based marshaling and unmarshaling, 2) the construction of a

WS modeling environment for generating WS code and enriching WS semantics. To our

best knowledge, there is no peer work that addresses either systematic meta-model con-

struction, or sufficient model-based WS code generation, while our work represents a

comprehensive solution to both issues. Even though the work presented in this chapter is

specific to WS development, the approach can be applied to other software system engi-

neering by reengineering to a different meta-model other than the WS meta-model.

 76

CHAPTER 4

DYNAMIC WEB SERVICES COMPOSITION

This chapter begins with the motivation for the dynamic WS composition, then

presents two types of dynamic composition for distributed components: assertive and

autonomous over .NET based Web Services environment. Case studies are provided to

illustrate at a low level how the underlying infrastructure enables the dynamic composi-

tion, and to illustrate at a high level how dynamic compositions are specified.

4.1 Motivation

Revisiting the features of distributed components as described in Chapter 1,WS

offers an interoperability infrastructure for distributed components as well as incorporat-

ing service discovery infrastructure in accordance with SOA. With problem (a) and (b)

being embraced, current WS technology is yet to address the concerns as set forth in (c)

and (d). Specifically,

1). Service Provisioning: in mission critical scenarios such as finance or military,

there is a need for guarantee of service availability continuously, rather than

shutting down the system for services adaptation;

2). Service Consumption: in distributed environments, service consumption experi-

ences are dynamic and desirable to be seamless, thus the dynamic customizability

of service s of vital importance in a service-oriented environment.

 77

As such, static component composition is not adequate, and both functional and

non-functional property adaptation need to be applied in a dynamic fashion. Along this

line, this chapter presents a dynamic composition of WS for adapting WS functionally

and non-functionally while maintaining the availability of WS. Here the WS environment

is based on .NET CLR. We chose .NET because it is a thorough, fundamental re-

architecting of a distributed computing platform based on WS, while other application

server support for Web Services tends to be designed more as another client, or presenta-

tion tier for the back-end systems, with the communication tier based on RMI34 or

RMI/IIOP35 rather than a strictly XML protocol based such as .NET [Newcomer, 02].

4.2 Overview of the Approach

4.2.1 Runtime code manipulation through assertive and autonomous composition rules

Figure 4.1 provides an overview of the dynamic composition approach. In the left

pane of the execution unit, the .NET XML WS, which is specified with WSDL, is a layer

built on top of .NET applications (1), which in turn runs over CLR (2). Consequently,

.NET based XML WS can leverage the benefits of managed execution, where the .NET

application is captured in the form of CIL (2), which is to be Just-In-Time (JIT) compiled

into native code and executed (3). Therefore, by manipulating CIL derived from the

XML WS implementation language, WS components can be composed at runtime.

The manipulation of CIL is illustrated in the right pane of the configuration unit,

which is comprised of a stack of composition rules with a meta-level hierarchy. Composi-

tion rules are specifications for component composition (d). Meta-rules are specifications

34 RMI – Remote Method Invocation: http://java.sun.com/rmi
35 IIOP – Internet Inter-Orb Protocol

 78

WS/WSDL

.NET Application

CLR/CIL

Native Code

Meta-Rule

Composition Rule

A
bs

tra
ct

io
n

le
ve

l

a

b

1

2

c

3
d

R
ule

M
eta-Level

Configuration UnitExecution Unit

i1

i2

Figure 4.1: Overview of the dynamic composition approach

of triggering conditions for applying the composition rules, and the firing of the composi-

tion rules is enabled through a rule execution engine automatically (c). The use of rule

engine for applying composition rules is useful for implementing autonomous composi-

tions based on the runtime status quo. The actor icon represents a configuration console

in a manual manner for both meta-rules (a) and composition rules (b). While the compo-

sition enabled through path (a->c->d) represents autonomous composition, the composi-

tion path of (b->d) represents the assertive composition. The configuration decision is

based on WSDL exposed by WS (i1); WS itself can in turn assume the configuration role

for specifying component composition reactively (i2).

 79

4.2.2 Salient features

The dynamic component composition approach also includes the following salient

features:

1). Non-invasive

 Non-invasive to application code for separation of composition concerns The

WS composition is realized through in-memory IL manipulation as opposed to

off-line invasive code change [Aßmann, 03]. The non-invasive change is often

desirable as a WS vendor may deliver the software package in binary form.

Also even though it is possible to derive CIL from a .NET executable using

some de-compilation tools, invasively changing either original source code or

derived CIL code will require unloading, recompiling and redeployment of the

original WS application, which compromises the availability of WS. More-

over, the invasive change of WS code will pollute the original application

such that recovering it will become difficult, which introduces the common

version control problems for software systems.

 Non-invasive to platform for portability. The composition through manipula-

tion of CIL at runtime (Figure 4.1-d) requires the interception of the managed

execution. Instead of re-implementing the CLR such as rewriting open source

CLR Rotor [Stutz, 03] to invasively add a listener for execution interception

at the compromise of portability of CLR, we use a pluggable, configurable

CLR profiling interface [Microsoft, 02] to achieve this goal, which can be en-

abled and disabled based on composition needs with ease to reduce unneces-

sary overhead.

 80

2). Language neutral for cross-language component composition

By specifying composition rules based on WSDL, which in turn is based on a

language neutral XML schema36 , and code manipulation at the intermediate

code (CIL) level based on language neutral CTS, WS components imple-

mented in different .NET languages can be composed across language

boundaries.

3). Adaptable composition.

With the configuration unit as a separate entity applied to runtime as shown in

Figure 4.1, not only is the composition concern separated, but also it can be

updated to realize adaptable composition at runtime.

The following section presents in detail the design and implementation of the dy-

namic component composition in Peer-to-Peer (P2P) scenarios, particularly, how the

composition rules are specified to facilitate assertive and autonomous configuration.

4.3 Design and Implementation of Dynamic Web Services Composition

This section first introduces the composition paradigm for the dynamic WS com-

position scenario in Section 4.3.1, then describes the underlying enabling infrastructure

for the dynamic WS composition in Section 4.3.2. In Section 4.3.3, the up-level pro-

gramming model is introduced for the assertive dynamic WS composition, followed by

descriptions of the justifications of the need of Adaptation Advice Repository (AAR) in

Section 4.3.4. Section 4.3.5 complements Section 4.3.3 by presenting the autonomous

dynamic WS composition, with the need of the rule inference engine justified.

36http://www.w3c.org/2001/XMLSchema

 81

4.3.1 Composition in Peer-to-Peer (P2P) paradigm

Figure 4.2 illustrates the architecture for the dynamic WS component composition

based on .NET WS environment. In our work, each WS component is hosted in an infra-

structure DynaCom, which is essentially a profiler-enabled CLR to be detailed in Section

4.3.3. DynaCom is used as a proxy for WS to interoperate with components in other lo-

cations through WS. Meanwhile, DynaCom can intercept the execution of the hosting

components and change the behaviour of the executing WS dynamically. DynaCom is

based on our prior work on using a profiling approach for dynamic service provisioning

[Cao-c, 05], but here it is tailored to WS composition, which has been initially given a

detailed account in [Cao-e, 05].

i n t e r n e t

D y n a C o m

D y n a C o m

D y n a C o m

c o m p o n e n t

D y n a C o m

p r o f i l e r - e n a b le d C L R

Figure 4.2: The P2P WS component compositions in .NET WS environment

 82

The composition model shown in Figure 4.2 represents a P2P paradigm, which is

the primary composition model to be addressed in this chapter. This choice is based on

the observations that P2P and dynamic composition are tightly associated:

1). P2P as an agile mode to accommodate dynamic features. While WS orchestration

by executing BPEL4WS37 in the execution engine represents a centralized com-

position model, it has been observed that such a composition model compromises

scalability, availability, and security for the server [Chen, 01]. With the highly

dynamic features of a distributed environment, the P2P component composition

paradigm will be more widely used.

2). Dynamic composition is the necessary means for realizing P2P computation in a

distributed environment. While component composition usually requires the gen-

eration of glue/wrapper code [Cao-b, 02], the physical location for hosting the

generated glue/wrapper code is a hard problem in P2P mode without central man-

agement and storage units. Dynamic composition, with glue/wrapper code gener-

ated in memory and JIT compiled and executed at runtime, provides a solution

for P2P component composition without the physical code placement issues.

4.3.2 Infrastructure for WS composition

DynaCom is the enabling infrastructure for dynamic WS composition. Figure 4.3

provides an anatomy of DynaCom. The part enclosed by the big square represents the

enabling mechanism for dynamic composition, which is transparent to the components to

be composed above the big square.

37 BPEL4WS - Business Process Execution Language for Web Services - http://www-
128.ibm.com/developerworks /library /specification/ws-bpel

 83

Common Language Runtime

Internet Information Server (IIS):
aspnet_wp.exe

Profiler

Native Code Execution

HookJust-In-Time Compilation

check
install

install

2

3

5

6

4

Advice Library

Advice Usage
Specification

apply

 9.1

11

Component 1

Component 2

Inference Engine
Adaptation Advice
Repository (AAR)

10.2

10.1

8

Fact Base

Rule Base

7
9.2

1.1

1.2

Figure 4.3: The architecture of DynaCom: Dynamic Composition enabling unit, which
includes the part enclosed by a bold-border rectangular and the IIS, facts. The parts of IIS
and facts are accessible to the remote components, while the enclosed part of DynaCom
are only accessible locally. The dashed line of 1 and 10 represents remote access, while
all the remaining solid lines represent local access. The laptop icon represents the local
configuration unit to DynaCom.

Our work is built upon the ASP.NET38, a WS implementation package based on

the .NET framework. In ASP.NET, Internet Information Service (IIS)39 is used to accept

the incoming WS SOAP (Simple Object Access Protocol) [Newcomer, 02] message

transported over HTTP (1) in Figure 4.3. Upon acceptance of the WS request encoded as

a SOAP message, an IIS filter will launch a work process (aspnet_wp.exe), which in turn

will launch CLR (2) to run the WS application in the mode of managed execution. At this

38 http://asp.net
39 http://www.microsoft.com/WindowsServer2003/iis/default.mspx

 84

point, the WS application is rendered as in CIL subject to be JITcompiled into native

code and executed (6). In order to adapt WS, it is needed to intercept the WS call at the

CIL level before it is compiled. While it is reasonable to implement the expected func-

tionalities in the CLR open source of millions of lines of code such as Rotor [Stutz, 03],

we feel it too expensive an effort. Instead, we use the CLR profiling API to implement a

Profiler as event handlers, and register them as listeners for the events generated from the

CLR (3). In contrast to the conventional publisher/listener model, which is often of a cli-

ent-server relationship, the profiler here will be mapped into the same address space for

the profiled application as an in-process server.

The events generated from the CLR are the result of managed execution, includ-

ing but not limited to garbage collection, class loading/unloading, CLR startup/shutdown

and JIT compilation. The event of our interest is JIT compilation, for which we imple-

ment in-memory CIL manipulation for the event handler. The adapted CIL will then be

JIT compiled and executed resulting in changed WS behavior. A one-shot change to CIL

will reduce the traceability of adaptation, impede the removal of the imposed adaptation

(thus incapable of dynamic decomposition), and restrict the flexibility of further adapta-

tion. Therefore, we interpose Hook code (4,5) in the WS application to be adapted, which

will check the AAR for applicable adaptation advice. The term “advice” is further ex-

plained in the next section. AAR is located in a shared memory for fast access during in-

memory CIL manipulation. The AAR includes an Advice Library storing predefined re-

usable advice in the compiled managed code form, as well as an Aspect Usage Specifica-

tion (AUS) component to indicate applicable advice for WS. The Profiler and the AAR

are subject to external configuration (7-11): for 7, the configuration is used to narrow

 85

down the scope of profiling; for 8-11, the configuration is used to dynamically specify

adaptation rules, among which 8 corresponds to a direct manipulation of adaptation rules,

while 9-11 corresponds to indirect manipulation of adaptation rules through a rule infer-

ence engine. The inference engine can dynamically inject AUS into AAR based on the

rule specification, which is to be detailed in Section 4.3.5. The laptop icon in the upper-

right corner represents the local configuration unit. The configuration unit for DynaCom

can adopt a GUI interface or an API interface. In our work, we use a simple console for

the local configuration unit handling configuration 7-9, while configuration 10-11 is real-

ized through an API interface.

4.3.3 Programming model

4.3.3.1 AOP for WS composition specification

While the preceding section describes the underlying infrastructure, this section

describes the up-level programming model for WS composition. In Figure 4.2, each Dy-

naCom only hosts 2 components, which is for simplicity purpose in illustration. In reality,

a DynaCom may be hosting multiple components. Consequently, a component handling a

crosscutting concern may be expected to be composed with multiple other components.

Thereafter, it is not possible to specify adaptation for every individual component upon

changing of requirements. Instead, there needs to be a means to abstract the adaptation in

a modularized way. AOP offers a means to abstract cross-cutting concerns in a modular-

ized way called an aspect, and the concerns can be weaved using weaver technology into

the base program based on the join point model, which specifies the destination to weave

concerns. In the same vein, we specify the adaptation advice in the AAR in a modular-

 86

ized way following AOP style, and the composition specification is rendered as an aspect

weaving specification.

Moreover, AOP also offers a means for separating composition specification from

components to be composed, with the underlying weaver realizing the composition. As

such, in case the components to be composed do not involve crosscutting concerns, the

component composition is still specified in the same way as an aspect weaving specifica-

tion with AUS.

The AOP weaving specification in AspectJ [Kiczales, 01] can be adapted for

component composition specification in terms of aspect weaving as illustrated in Table

4.1. While the aspect weaving specification in Table 4.1 remains AspectJ-like, which fa-

cilitates programming, the actual aspect weaving specification is specified with XML-

based AUS; the AspectJ-like specification can be translated into XML-based AUS.

4.3.3.2 Implementation of dynamic weaver

To weave and unweave the specified advice, we instrument the hooks at both the

entry (pre-hook) and exit point (post-hook) of the WS method to be adapted, which are

used to check into the AAR to see if corresponding before advice and after advice is ap-

plicable: the former performing some pre-processing before the actual WS method exe-

cution, while the latter performs some post-processing immediately before the WS

method execution returns. Such pre- and post- processing capacity can be used to instru-

ment codes for addressing non-functional concerns, such as applying access control upon

the entry into the WS method, or applying state persistency service for the executed WS

application upon the end of the WS call.

 87

Table 4.1: Composition specification in the form of aspect weaving

Component Composition Aspect Weaving Specification

a precedes b

after (a)

 {b;
}

Sequential

a follows b

before (a)
 {b;

}

Wrapping

a is wrapped by b at the
beginning and c at the end

around (a)
{b;

 proceed();
 c;
}

Overiding a is overridden by b around (a)
 {b;}

Also included in the pre-hook are the instructions to check if an around advice is

specified or not, and a jump instruction to redirect the execution to the exit point of the

WS application. The jump instruction is to be activated if an around advice is found valid

in the AAR. With around advice, the original WS will be replaced with new behaviour

specified in that around advice. Consequently, not only the original WS can be decorated,

it can also be overridden completely, which is necessary when a buggy WS is identified

and needs to be removed, or an old service module need to be updated. The around ad-

vice sufficiently offers a delegation and wrapping approach for component composition

which is exemplified in Section 4.4. By using a hook for weaving, advice can be applied

 88

dynamically and proactively. Meanwhile, unweaving advice can be realized by dis-

activation of the corresponding AUS in AAR. Figure 4.4 is the CIL manipulation tem-

plate for adapting a WS method. An example is also provided in Appendix B to illustrate

the code manipulation at the binary level.

IL_0000: ldstr "classname/method_name/parameter_name_list/returntype/before"
IL_0005: call void dynaweave.hook::advising(string) //to check & apply before-advice
IL_000a: pop //to maintain the original stack
IL_000b: ldstr "classname/method_name/parameter_name_list/returntype/around"
IL_0010: call void dynaweave.hook::advising(string) //to check & apply around-advice
IL_0015: brtrue IL_020b
IL_001a: <Original Method body in IL>
............
IL_0200: ldstr "classname/method_name/parameter_name_list/returntype/after"
IL_0205: call bool dynaweave.hooker::advising(string) //to check & apply after-advice
IL_020a: pop //to recover the original stack after original method is executed
IL_020b: ret

Figure 4.4: Instrumentation of IL code of a WS method

Note in this section composition specification is assertively applied to the compo-

nents to be composed based on the dynamic weaver, without the consideration of auton-

omy in the dynamic environment: that part is to be detailed in Section 4.3.5, with the de-

scription of the rule inference engine introduced, which is necessary for autonomous

composition.

4.3.4 The need for a serializeable aspect weaving specification in XML

In DynaCom, while AUS can take the form of AspectJ-like syntax as shown in

Table 4.1, AUS is subject to be updated in a dynamic environment, especially in the

 89

autonomous composition scenario as introduced in Section 4.3.5. As such, AUS needs to

be represented in a serializeable manner in the persistent form of AAR. XML is widely

used to serialize data between applications. We use the XML for AUS as well for serial-

izeable aspect weaving specification, which also has the following underpinnings:

 As shown in Figure 4.3, the execution of .NET based WS applications are cap-

tured at the CLR level based on CTS, which is type system neutral to any .NET

application language. Consequently, an aspect weaving specification based on

CTS will be applicable to all .NET WS applications. However, writing adaptation

AUS based on low level CTS is error-prone and not necessary for high-level

AUS. Also, AUS, as the specification reflecting the business requirement adjust-

ment (by composing and decomposing related components), should have an ab-

straction level close to business requirements, rather than being tied to underlying

implementation details. On the other hand, WSDL is based on the XML Schema,

which is another language neutral type system that can be mapped to the lan-

guage-neutral CTS. The XML Schema based specification is parsed and trans-

lated to CTS to be matched against the string provided by the hook such as de-

scribed in IL_0000, IL_000b, IL_0200 in Figure 4.4.

 Components delivered may be in binary form with source code being unavailable,

thus AUS at the application code level is not feasible. On the other hand, compo-

nents in the .NET WS environment are exposed through the WSDL interface,

which offers a reference point for specifying WS component adaptation.

The XML schema for AUS is illustrated in Figure 4.5. Associated with each ad-

vicename is the path information for actual advice in the form of managed code stored

 90

<wsdl:operation name="apply_advice">
 <wsdl:input message="tns:advicetype"/>
 <wsdl:input message="tns:return_type"/>
 <wsdl:input message="tns:classname"/>
 <wsdl:input message="tns:methodname"/>
 <wsdl:input message="tns:parameter_list"/>
 <wsdl:input message="tns:advicename"/>
</wsdl:operation>

Figure 4.5: The AUS schema

in the AAR. All the advice code is defined as a template with the tuple <Classname,

Methodname, Parameter_List> as parameters, which offers reusability of advice. Such

advice can be pre-built in any .NET language and compiled into managed code. If a

matching advice is found, then the advice code will be loaded from the corresponding

path and called. In our work, the wild-card characters are also supported for AUS.

4.3.5 Autonomous component composition using a rule inference engine

4.3.5.1 The need for a rule inference engine

Functionality for the composed distributed software systems can be predicted

based on the constituent components [Hissam, 03], thus a component composition based

on functional requirements can be specified assertively. In contrast, non-functional prop-

erties such as pricing based on end-to-end delay (service consumption duration) for com-

posed distributed software systems can only be reasoned about at runtime because of

their dynamic characteristics. As such, a distributed software system needs to self-adapt

 91

itself by composing and decomposing components autonomously to achieve the expected

QoS. While programmatically incorporating all adaptation decisions are theoretically

sound, it is not practically feasible. Consequently, re-writing and recompiling the code

upon changed adaptation decision are necessary, which is not appropriate for dynamic

composition. Using an inference engine, the rules can be specified declaratively in a logic

programming style, which can further be executed directly in an interpretive fashion, as

opposed to being specified in an imperative fashion and need to be further compiled be-

fore execution. Therefore, with the capacity of maintaining the execution of runtime, in-

ference-engine based composition rule specification aligns with the dynamic composition

paradigm.

Moreover, the declarative rule specification is at an abstraction level closer to user

requirements than the programming language, which is easier to be derived from user re-

quirements. Also, with pattern matching and first-order logic, the declarative rule specifi-

cation can be used to sufficiently specify the WS selection, which is incorporated as part

of the WS composition rule specification to be executed by the rule inference engine

seamlessly. This is to be exemplified further in Section 4.4.3.

4.3.5.2 Jess as the rule engine

In our work, we use Jess [Friedman-Hill, 05] as the underlying inference engine,

which is a forward and backward chaining rule engine for the Java platform. Associated

with the inference engine are the fact bases and the rule base as shown in Figure 4.3. The

rule base is only accessible to the local hosting site, and represents local autonomous

composition policies; comparatively, the fact base is exposed to both the local and remote

 92

site, which can be manipulated by either the local configuration unit, local components,

or remote components. The fact bases of different DynaCom are federated, and a local

rule engine can query a remote fact base for triggering an action. This is useful when a

local composition rule is dependent on remote component status (which is reflected in the

remote fact base). For example, the unavailability of remote components during a certain

period of time will trigger the local component to connect to an alternative component,

which offers a means of fault tolerance.

Jess offers a hybrid programming paradigm between the Java language and de-

clarative rule specification: the Java code can invoke the Jess rule engine while the Jess

rules invoke Java code. In order for the Jess fact base to be interoperate with remote

components, as well as to enable the Java-based inference engine to be interoperable with

the .NET environment, we wrap the Java-based Jess API with a WS layer using Java

WSDP40.

4.3.5.3 Rule specification for autonomous composition

The self-adaptation decisions can be collectively built into a knowledge base pro-

actively and retroactively. Therefore, the complete dynamic component specification in

terms of dynamic, autonomous aspect weaving rule takes the following form41:

 apply [aspect_name] when [logical_condition]

The corresponding Jess rule specification is:

40 Java WSDP – Java Web Services Developer Pack – http://java.sun.com/ webservices/jwsdp/index.jsp
41 Note this specification is semantically equivalent to the AUL introduced in Section 2.5.3.1.

 93

(defrule aspect-weaving
([logical_condition in])
 =>(apply [aspect_name]))

The when clause represents the condition under which the action apply [as-

pect_name] is to be performed, which in turn will add an AUS corresponding to .

apply [aspect_name]into the AAR through Jess-.NET bridge to be detailed in

Section 4.4.2.

4.4 Case Study

In this section we present three case studies. They are complementary to each

other in the sense that:

 The first one in Section 4.4.1 is an assertive dynamic composition example which

is also intended as a shortcut to illustrate how the underlying infrastructural parts

shown in Figure 4.3 (except the rule inference engine part) work together.

 The second one in Section 4.4.2 showcases up-level programming model of dy-

namic WS composition, particularly the the use of Jess language and its interop-

eration with .NET. for autonomous WS composition.

 The third one in Section 4.4.3 further demonstrates the power of declarative logic

programming for the autonomous dynamic composition specification.

4.4.1 Composing crosscutting credit authorization WS components - putting the pieces
together

Figure 4.6 provides an example of a college student credit authorization WS to

demonstrate the assertive dynamic component composition for a non-functional concern:

 94

class MainApp: WebService {

 public void processrequest(string SSN, int creditline)

 {
 …..
 }

 [WebMethod]
 public bool credit_collegestudent(string SSN, int creditline) {

 processrequest(SSN, creditline);

 return true;
 }

}

………..
- < ="credit_collegestudent">
- < >
- < >
< ="0" ="1" ="SSN" ="s:string" />
< ="1" ="1" ="creditline" ="s:int" />
</ >
</ >
</ >

- < ="credit_collegestudentResponse">
- < >
- < >
< ="1" ="1" ="credit_collegestudentResult"
="s:boolean" />

</ >
</ >
</ >
</ >
</ >

- < ="credit_collegestudentSoapIn">
< ="parameters" ="tns:credit_collegestudent" />
</ >

- < ="credit_collegestudentSoapOuf">
< ="parameters" ="tns:credit_collegestudentResponse" />
</ >

- < ="MainAppSoap">
- < ="credit_collegestudent">
< ="tns:credit_collegestudentSoapIn" />
< ="tns:credit_collegestudentSoapOut" />
</ >
</ >

……..

<wsdl:operation name="apply_advice">
 <wsdl:input message="around"/>
 <wsdl:input message="bool"/>
 <wsdl:input message="MainApp"/>
 <wsdl:input message="credit_*"/>
 <wsdl:input message="string, int"/>
 <wsdl:input message="historychecking"/>
</wsdl:operation>

public class historychecking
 {
 public static void applying(string ssn, int amount)
 {
 bool ok= docredithistorychecking(ssn,
 amount);
 if(ok)
 proceed();
 else return false;
 }
 …...
 }

IL/CLR

B

A

C

D

s:element
s:complexType
s:sequence
s:element
s:element
s:sequence
s:complexType
s:element
s:element
s:complexType
s:sequence
s:element

s:sequence
s:complexType
s:element
s:schema
wsdl:types
wsdl:message
wsdl:part
wsdl:message
wsdl:message
wsdl:part
wsdl:message
wsdl:portType
wsdl:operation
wsdl:input
wsdl:output
wsdl:operation
wsdl:portType

name

minOccurs maxOccurs name type
minOccurs maxOccurs name type

name

minOccurs maxOccurs name
type

name
name element

name
name element

name
name

message
message

Figure 4.6: Composing credit authorization component assertively

access control. Figure 4.6-A provides a simple WS application written in C#, which pro-

vides a WS method for authorizing credit card application based on the Social Security

Number (SSN42) and the expected credit line. The corresponding WSDL in Figure 4.6-B

can be automatically generated from the source code in Figure 4.6-A based in ASP.NET,

42 An identification number used to identify income earners in the United States.

 95

which in turn is to be exported and used as the basis for AUS as well. Figure 4.6-C is an

AUS with around advice to apply credit history checking before any credit card applica-

tion request is processed. The AUS represents a sequential composition specification for

a component encapsulating crosscutting concerns (here HistoryChecking). The wild card

specification in credit_* represents all credit application with the request name preceded

with “credit_”. Figure 4.6-D is the source code for the pre-built credit history checking

advice, which can be written in any .NET language (here C#) and is compiled and per-

sists in the managed code form. The type systems in Figure 4.6-A, Figure 4.6-C, Figure

4.6-D are translated into CIL and are matched up in CLR. Once a match holds, the advice

in Figure 4.6-D will be called by the hook instrumented at runtime. The WS application

source code level detail is transparent to AUS in Figure 4.6-C, as well as to the His-

toryChecking component in Figure 4.6-D. By instrumentation of intermediate code, com-

ponent composition can be realized across language boundaries without invasively

changing application source code.

4.4.2 Composing travel planning WS components – dynamic composition program-
ming model illustrated

The former section demonstrates how each part in DynaCom is integrated to-

gether for assertive dynamic component composition, particularly how the intermediate

code manipulation enables the component composition across language boundaries with-

out invasively accessing the application source code. This section will further explore the

dynamic composition for multiple components for travel planning, which not only in-

cludes assertive dynamic composition, but also autonomous dynamic composition using

the Jess rule inference engine. Complementing the previous case, this case focuses on the

 96

user level component composition specification as opposed to dwelling on the low level

intermediate code manipulation.

In Figure 4.7, the boxed part contains the WS components for travel planning,

with those above the box representing the types used in the WS components.

+starting_date:int
+returning_date:int
+origin:string
+destination:string

TripInfo

+totalprice:float
+totalmiles:int
+stop_over:string

Itinerary
+name:string
+seatclass:string
+price:float

FlightInfo

+name:string
+star:int
+location:string
+roomsrequested:int
+price:float

HotelInfo

+companionnum:int
TravelerInfo

+creditpoints(Itinerary):bool
+getpoints(membernum:int, frequent_airline:string):int
+validate(membernum:int, frequent_airline:string):bool

Membership_Management (MM)

+BookPackage (Itinerary): Itinerary
+BookFlight(Itinerary):FlightInfo
+BookHotel(Itinerary): HotelInfo

Travel_Agent (TA)

+getHotel (TravelerInfo, HotelInfo): Hotelinfo

HotelBooking (HB)

+getFlight (TravelerInfo, FlightInfo): FlightInfo

FlightBooking (FB)

Travel planning WS components

0..* 0..*

0..* 0..*

1

0..*

+membernumber: int
+frequent_airline:string
+memberstatus:int
+memberclub:string

MemberAccount

hotel

flight

traveler

members

Figure 4.7: Class diagram for travel planning WS components

Each customer plans the travel through a travel agent Travel_Agent (TA). The

travel agent will handle both the booking of flight, FlightBooking (FB), and hotel, Hotel-

Booking (HB). All travelers can credit their mileage into their own frequent flier number

through Membership_Management (MM). They can book the travel package including

both hotel and flight, or just book one of them. They can also book for group travelers.

 97

The result of the travel booking process is the itinerary information (Itinerary), which

includes the total cost of the trip. All those WS components in the box are loosely cou-

pled and dynamically bound based on their partnership, service charge, and QoS. Figure

4.8 illustrates the travelling components composition process with sequence diagram. The

italicized part represents the dynamically composed components; the TA and its associ-

ated methods represents the static front end travel agent components to the customers

with back end components dynamically composed on demand.

:TA

:FB

:HB
BookPackage

getFlight

BookFlight

:MM

getHotel

B
ookH

otel

<<create>>

<<create>>

validate

creditpoints

Figure 4.8: Dynamic composing travel planning WS components

 98

4.4.2.1 Static front end

During travel planning, the customer starts from TA WS method BookPackage,

with the backend components dynamically composed to fulfill the travel planning pur-

pose. The TA serves as front end components to the customers to be dynamically bound

to backend WS components, and the BookTravel method is implemented as shown be-

low:

Itinerary BookPackage (Itinerary it)
 {
 FlightInfo fi;
 HotelInfo hi;
 fi=BookFlight (it);
 hi=BookHotel(it);
 return combine(it1,it2);

}

4.4.2.2 Dynamic backend

While the front end code as shown above is static to the customer side, there are

some dynamic component composition concerns in the backend that is transparent to the

customers:

 Dynamic partnership

The front end TA component may have dynamic partnership with back end FB

and HB based on their mutual contract, service charge (if the service charge is exceeding

the budget, the partnership will be cancelled and a new partner will be identified), or QoS

(if the service of the current partner is down, an alternative partner need to be identified).

Note we assume membership management is centralized and statically bound in this case

in accordance to the real world examples, where membership such as Social Security Ac-

count is centrally administrated by the appropriate government agency. As such, the part-

 99

nership should be established dynamically, which, consequently, is also subject to dy-

namic change. Figure 4.8 illustrates the dynamic partnership establishment by using two

<<create>> messages before the call of BookPackage, which can be translated into the

following43:

before(Itinerary *.BookPackage (Itinerary it))
{

 this.fb= new FB(…);
//the “…”part provides the
//information referencing the
//actual FB component that
//the instantiated object is bound to

 this.hb= new HB(…);
}

Furthermore, the front end BookFlight and BookHotel code is dynamically over-

ridden to delegate to the actual methods of FB and HB respectively. This is achieved us-

ing around advice as shown below:

 around (FlightInfo *.BookFlight (Itinerary it))
 {
 return fb.getFlight (it.traveler, it.flight);
 }

 around (HotelInfo *.BookHotel (Itinerary it))
 {
 return fb.getHotel (it.traveler, it.hotel);
 }

43 For illustrative purpose, we use the syntax resembling AspectJ to specify the component composition,
which in turn will be translated into XML representation as is described in Section 4.3.4.

 100

 Dynamic membership management.

With the tightening security measures, the customer’s background is subject to be

checked by the central member management (MM) unit within a designated period of

time. As such, a rule is added in Jess that for a given duration, the membership will be

validated (e.g., background checking, passport verification) for each BookPackage call.

Assume during the period July 1, 2005, to September 20, 2005, all traveller’s member-

ship will be validated by MM. To enable the Jess rule engine to trigger the dynamic com-

position of validation behavior, we need to:

1) capture the execution of BookPackage and relay the values into Jess fact

bases;

2) have a bridge from Jess to .NET for rules to directly manipulate AAR in Fig-

ure 4.3.

As is mentioned in Section 4.3.5.2, we use WS to wrap a Java class, which in turn can

interoperate with Jess. Thus, a .NET based WS component can interoperate with Jess

rules. Specifically, to achieve 1), we add the following code into the “before advice” for

BookPackage:

before(Itinerary *.BookPackage (Itinerary it))
{ …… //above are other advice code which are ignored
 //here for clarity
WS_Jess.assert(“membernumber”,
 it.traveler.membernumber);

 WS_Jess.assert(“airline”,
 it.traveler.frequent_airline);

Date date=getdate();
WS_Jess.assert(“date”,date);
//the above three lines add three
//facts to the Jess fact base through WS-Jess bridge
}

 101

To achieve 2), we define a Java class which is used as a relay between Jess and the.NET

platform, so that whenever the rule fires, AAR in .NET can be manipulated from Jess.

The Java class is defined as follows:

class Jess_WS{
 public static void
 apply(string advicetype, String returntype,
 String classname, String methodname,
 String parameterlist, String advicename)
 {
 … //code to interoperate with .NET to update AAR;
 }
}

The parameter list is consistent with the XML elements as shown in Figure 4.5. The Jess

rule is specified as follows, which calls into the Java class Jess_WS:

(bind ?aus (new Jess_WS)) ;;aus_wrapper is the Java

;;wrapper for writing AUS
 ;;into the AAR through Java-WS bridge using

;;Java WSDP as ;;described in Section 4.3.5.2
(defrule security_control
(date ?d &:(>= ?d 20050701)&:(< ?d 20050920))
 =>(?aus apply “before”, “”, “TA”, “BookFlight”, “”,
“MM.validate”))

The last line defines a Jess rule specifying once the booking date is between July 1, 2005

and September 20, 2005, the membership validation advice will be applied through Jess-

Java-WS interoperation before the call of *.BookFlight in the .NET environment. Once

the condition is satisfied during runtime, the corresponding rule will be applied autono-

mously for dynamic composition. Furthermore, as the Jess rule exists as a separate entity

for configuration from the execution logic, the composition rule can be adapted as needed

at runtime as well.

 102

Likewise, dynamic composition can be applied to credit travel points after the

travel reservation, using after advice:

after(Itinerary *.BookPackage (Itinerary it))
{ MM.creditpoints(it);
}

Furthermore, dynamic composition can be applied either assertively or autonomously as

shown above for other non-functional property guarantees including but not limited to

budgeting (if the cost of the requested service exceeds the budget, either to choose a

cheaper service or to remove subcomponents for reducing cost), and load balancing (if

current load is over capacity, the service requests are to be delegated to alternative com-

ponents). As those composition specifications overlap the aforementioned dynamic com-

position specifications in principle, they are ignored here to avoid duplication.

4.4.3 A financial WS portal: composition specification through declarative logic pro-
gramming

 This section demonstrates the power of declarative logic programming for speci-

fying WS composition. In particular, this section will show how the gap between compo-

sition requirements and the execution of the composition can be bridged using the de-

clarative logic programming paradigm.

 In a distributed environment, components implementing identical functionalities

may be provisioned in variations in terms of non-functional properties to accommodate

different non-functional requirements. Figure 4.9 is an example of a Financial WS portal

(FWP), which provides the three types of quote services: stock, fund, and Exchange-

Traded Funds (ETF). Those quote services are leased from third-party service providers.

 103

Financial WS Portal

(FWP)

Stock Fund Exchange-Traded Funds (ETF)

S1 S2 S3 F1 F2 E1 E2 E3 E4F3 F4 F5

Figure 4.9: Financial WS portal

Every type of service has multiple service providers to choose from, each with a different

non-functional properties in terms of QoS (here end-to-end delay) and economical (here

service lease charge) properties. The goal of the financial WS portal is to dynamically

compose existing third-party services within a certain budget but with shortest end-to-end

delay.

Figure 4.9 uses the feature model representation as described in Section 2.4.1 for

illustrating the containment relationship of WS. Specifically, the FWP is composed of a

Stock quote WS, a Fund quote WS, and an ETF quote WS. Thus each possible FWP cor-

responds to a composition tuple of (Stock, Fund, ETF), each item referring to a constitu-

ent WS. Each WS has a number of service providers with different end-to-end delays and

service charges, which are listed in Table 4.2. It can only choose one of them. The overall

non-functional properties for the FWP is calculated as follows (E2ED stands for End-to-

End Delay, SC stands for Service Charge):

E2EDoverall = E2EDstock+ E2EDfund + E2EDetf

SCoverall = SCstock + SCfund + SCetf

 104

Table 4.2:The non-functional properties for a third-party financial WS provider

WS Type End-to-End Delay Service Charge
S1 10 200
S2 20 250

Stock

S3

40 100

F1 30 170 Fund
F2
F3
F4
F5

50
33
28
17

230
320
145
400

E1 15 400
E2 35 300
E3 25 350

ETF

E4 10 500

 Furthermore, there are some constraints associated with the choices of the service

providers:

 Bundle sale

Some services provided from the same company have to be purchased in a bun-

dle. Here the following groups of services have to be purchased in a bundle:

(S1, E2), (F4, E1)

 Exclusion sale

Exclusion constraints can be further applied to the service providers such that

there are mutually exclusive service providers that cannot be purchased together

with one another. Here such groups of mutual exclusion constraints are:

 (S3, F3, E3), (S1, F5)

 Intuitively, the solution space of the component family needs to be explored first

to derive all possible composition tuples of (Stock, Fund, ETF) after filtering those non-

 105

qualified tuples based on the constraints, then to calculate the shortest end-to-end within

an upper limit of service charge. However, once the constraints are changed (e.g., with

mutual inclusion or exclusion relationship changed), the solution space exploration algo-

rithm needs to be rewritten to accommodate the change, which is not fit for dynamic

composition. In the work presented in this dissertation, Jess is used to resolve this prob-

lem.

 The Jess specification includes the fact specification and rule specification. The

facts for the financial WS portal application includes the non-functional properties of

each service provider, and the constraints regarding the qualification of a valid composi-

tion tuples. The non-functional properties of each WS are represented with an ordered

fact in Jess. For example, for the stock quote provider S1, the corresponding fact defini-

tion will be:

(Stock S1 10 200)

with corresponds to the tuple of (service type, service name, end-to-end delay, service

charge). All facts are illustrated in Figure 4.10.

Figure 4.11 is the Jess query expression to query all the qualified composition tu-

ples together with the corresponding overall end-to-end delay and total service charge.

Note those prefixed with “?” represents a regular variable, while those prefixed with $?

represents a list variable. Line 3 declares the query parameter, which is the budget allo-

cated for service charges. The query is expected to return all possible composition tuples

within the budget. Lines 4-5 bind to the fact base for all possible composition tuples

without constraints being applied. Line 7 ensures that the query returns those under

budget only. Line 8 creates a list made of the tuple of bounded value of (stock, fund, etf).

 106

(Stock S1 10 200)
(Stock S2 20 250)
(Stock S3 40 100)
(Fund F1 30 170)
(Fund F2 50 230)
(Fund F3 33 320)
(Fund F4 28 145)
(Fund F5 17 400)
(ETF E1 15 400)
(ETF E2 35 300)
(ETF E3 25 350)
(ETF E4 10 500)

(inclusion S1 E2)
(inclusion F4 E1)
(exclusion S3 F3 E3)
(exclusion S1 F5)

non-functional properties

constraints

Figure 4.10: Fact specification in Jess

1. (defquery search
2. “Find the shortest end-to-end delay of a composition tuple”
3. (declare (variables ?budget))
4. (Stock ?stock ?delay1 ?charge1)
5. (Fund ?fund ?delay2 ?charge2)
6. (ETF ?etf ?delay3 ?charge3)
7. (<= (+ ?charge1 ?charge2 ?charge3)?budget)
8. $?para <- (create$?stock ?fund ?etf)
9. (and (inclusion $?inclusionlist)
10. (or (=0 (length$ (intersection$ $?inclusionlist $?para)))
11. (subsetp $?inclusionlist $?para)))
12. (and (exclusion $?exclusionlist)
13 (< (length$ (intersection$ $?inclusionlist $?para)) 2))
14. ?delay <- (+ ?delay1 ?delay2 ?delay3)

Figure 4.11:Query into fact base in Jess

 107

Lines 9-13 applies the constraints. Specifically, Lines 9-11 ensure the returned tuple sat-

isfies the inclusion constraints (Bundle Sale), which specifies that either the currently

bound value list of (stock, fund, etf) has no intersection with any inclusion facts, or the

inclusion list is subsumed in the list of (stock, fund, etf). Lines 12-13 ensure the returned

tuple satisfies the exclusion constraints (Exclusion Sale) by specifying that there are no

two elements in the list of (stock, fund, etf) that appear in any exclusion list.

 The query shown in Figure 4.11 returns a collection of qualified composition tu-

ples, together with the non-functional property values such as total end-to-end delay for

the corresponding composition tuple. Further rule specification is needed such that when-

ever the above query returns non-empty results, the composition tuple with the shortest

end-to-end delay needs to be returned, which is illustrated in Figure 4.12

 In Figure 4.12, a Jess rule is specified: Line 2 represents the condition, while

those below Line 3 represent the actions to fire upon the satisfaction of the condition

specified in Line 2. In Line 2 the budget of 800 ($) is fed into the query of “search”,

which returns all matching results. Note that to ensure those specifications before “=>”

are condition specifications, we use pattern binding “<-“ to assign the search result to the

?result variable rather than using the bind function, which is an action not a condition.

Lines 4-13 iterate through the result sets to get the composition tuple of minimum end-to-

end delay. Lines 15-18 is to specify the Jess actions dealing with WS composition

through the Jess-WS bridge which is described in the second case study in Section

4.4.2.2. Here sequential aspect weaving (see table 4.1) is used to compose the three WS

providers (stock, fund, ETF) together.

 108

1. (defrule FWP
2. ?result <- (run-query* search 750)
3. =>
4. (bind ?minimum-delay -1)
5. (while (?result next)
6. (bind ?delay (?result getString delay))
7. (if (< ?minimum-delay ?delay)
8. then
9. (bind ?minimum-delay ?delay)
10. (bind ?stock (?result getString stock))
11. (bind ?fund (?result getString fund))
12. (bind ?etf (?result getString etf))
13.)
14.)
15. (if (> ?minumum-delay 0)
16 (bind ?aus (new Jess_WS))
17. (?aus apply "after", "", ?stock, "quote", "..", (str-cat ?fund ".quote"))
18. (?aus apply "after", "", ?fund, "quote", "..", (str-cat ?etf ".quote"))
19.))

Figure 4.12: Jess rule for seamlessly integrating WS searching and dynamic WS compo-
sition

 Based on Figure 4.9, there are totally 3*5*4=60 possible composition tuples, out

of which there are 15 qualified composition tuples after applying mutual inclusion and

exclusion constraints. With 800 as the budget, there are 6 composition tuples left, among

which the composition tuple with shortest end-to-end delay is (S2, F4, E1); the corre-

sponding end-to-end delay is 63.

 As it can be seen from Figure 4.12, the WS selection specification and the WS

composition specification are unified under the single logic rule specification, the seam-

less integration of those two are further enabled under a rule inference engine.

 109

4.5 Performance Evaluation

4.5.1 Three-level optimization

Using the profiler to handle all the events generated from all managed execution

in CLR is expensive and will degrade system performance significantly. Therefore, we

apply optimization at three levels through configuring the profiler as indicated in (7) in

Figure 4.3:

1). As the CLR can be launched from a shell, Internet Explorer, ASP.NET, and other

customizable CLR hosts for managed execution, we configure the profiler to skip

profiling for all non-ASP.NET modules hosted in CLR, which can be filtered easily

based on the name of the module that launches the CLR.

2). We could further trim unnecessary profilings based on class name, or CIL method.

This is possible because all managed code is translated to CIL, and the CIL level in-

formation can be derived from the corresponding WSDL for the WS; this is also nec-

essary to avoid profiling system classes and methods.

3). We mask all unnecessary events except JIT compilation events, which is needed for

handling CIL manipulation.

4.5.2 Test setup

To evaluate the influence of CLR profiling-based WS adaptation on performance,

we implemented a simple WS server application with 100 loops for calling a method,

which contains only a single addition calculation in its body. We hosted this WS applica-

tion on a Dell Workstation with Intel XEON CPU 2.2GHx, 1.00GB RAM, which is in-

stalled with Win XP professional version 2002 with IIS 5.1, .NET framework version

 110

1.1.4322. We configured the profiler so that the method is to be profiled and adapted with

log advice to write to a file a line of strings. A WS stub is generated by compiling the

corresponding WSDL for this simple WS application. The WS stub is instrumented to-

gether with a simple client application for the client application to call the server-side

WS. The client side is hosted on a Dell PC with Intel Pentium 4 CPU 1.80 GHz, 512 MB

RAM which resides on the same LAN environment as the server so as to minimize the

network influence during the server side performance benchmarking.

Note that the CLR profiling-based approach only applies to managed code to be

loaded and JIT compiled. Therefore, we run ASP.NET in the managed mode for profiling

WS to realize dynamic adaptation. ASP.NET can load one worker process to handle a

pool of WS requests. Once the worker process is launched to serve the first WS requests

in the pool, it continues to serve other WS requests in the same pool until the end of its

lifecyle without itself being reloaded into CLR, thus it fails to profile the other WS appli-

cations in the same pool. Therefore, we adjust the setting for ASP.NET so that a new

worker process will be created for each WS request so that each WS call can be captured

by the Profiler and thus is adaptable.

4.5.3 Test result evaluation

The goal of our tests is to evaluate how the adjustment of worker process lifetimes

(Figure 4.13-a), and the enactment of profiling-based dynamic adaptation (Figure 4.13-b)

affect the performance of WS provisioning in the peer-to-peer composition model.

 111

Without Adaptation Advice

0

1000

2000

3000

4000

1 2 3 4 5

number of tests
(a)

tim
e

(m
ill

is
ec

on
d

Infinite Life
Profiler On
Infinite Life
Profiler Off
Zero Life Profiler
On
Zero Life Profiler
Off

 With Adaptation Advice

0

2000

4000

6000

8000

1 2 3 4 5

number of tests
(b)

tim
e

(m
ill

is
ec

on
d

0 match in 1
advice
1 match in 1
advice
0 match in 5
advice
1 match in 5
advice

Figure 4.13: Benchmarking dynamic WS adaptation

For the case in Figure 4.13-a, we did not provide any adaptation advice when ad-

justing the worker process life between zero life (a new worker process is created for

each WS request) and infinite life (the same worker class is used for multiple WS re-

quests). The absence of advice execution will help clarify the influence of the changing

life of a worker process on the system performance.

There are significant differences between the first call and the remaining calls for

an infinite life case as the first call involves the creation of a new worker class, thus in-

 112

curring more overhead than the remaining WS calls which reuse the original worker

process. Also the presence of profiling does not affect performance much in the case of

infinite life, as the worker process is no longer to be reloaded for new WS requests, thus

the new WS will not be adapted, and the event handler in the profiling API is ignored. In

comparison, the worker process with zero life will incur a performance degradation of 1.7

times slower with profiling on than with profiling off. With the absence of the profiler,

the overhead incurred by adjusting from infinite life to zero life will be 3.0 times. With

the absence of advice, the overall performance degradation (with profiling on, zero life

for worker class) against the conventional WS provisioning scenario (with profiling off,

infinite life for worker class) for this WS provisioning is 3.0*1.7=5.1. Figure 4.14 illus-

trates the performance degradation.

In Figure 4.13-b, we focus on evaluating the influence of active advice on the

overall performance. Therefore, the worker process is set with zero life. We found the

number of active advice will not affect the performance linearly, as the AUS are stored in

the paging file to be shared by hooks, which constitutes a minor overhead in comparison

to that incurred by hook instrumentation and calling of advice. The weaving of a match-

ing advice in the case of zero life in Figure 4.13-b incurs a performance degradation fac-

tor of 2.2. Therefore, the overall performance degradation (with profiling on, zero life for

worker class) against the conventional WS provisioning scenario (with profiling off, infi-

nite life for worker class), by synthesizing the result descibed in the preceding paragraph,

will be 2.2*5.1=11.2.

In the real world deployment, we can reduce the overhead by setting the worker

class to zero life at the adaptation time, then resetting it to infinite time after adaptation is

 113

infinite life
zero life

profiler off

profiler on
0

1

2

3

4

5

Performance Degradation
(without adaptation advice)

profiler off
profiler on

Figure 4.14: Performance degradation with 0 adaptation advice

done. Yet this assumes a predicable adaptation process.

4.6 Related Work

The related work can be classified along several dimensions as follows.

4.6.1 Component composition at different abstraction level and scope

Component composition can be enacted at design level (e.g., [Clarke, 02], [Keller,

98]), and application code level (e.g., [Hölzle, 93], [Mezini, 98], [Seiter, 99]). In contrast,

our work on component composition is targeted at the service level, while it is enacted at

the intermediate code level without introducing new language constructs. With a lower-

level of abstraction, our work enables cross-language component composition, while the

above work restricts the component composition to a specific language. Also, none of the

 114

aforementioned work on component composition is applied at runtime, which is however

necessary in a distributed computing environment.

While the work presented in this dissertation targets WS, the UniFrame project

([Raje, 02], [Olson, 05]) has a more broad vision, which aims at creating a framework for

seamless integration of general distributed heterogeneous components. In UniFrame,

component composition is also following the peer-to-peer paradigm, which is enabled

through discovery services in search of a matching component. Once a searched compo-

nent does not match the requirement functionally or non-functionally, the search process

will be launched again, which exhibits the autonomous features similar to that described

in the work presented here. It is expected that the principles of our approach can be inte-

grated into UniFrame as well.

4.6.2 Using AOP for composition and adaptation

The Composition pattern has been proposed in [Clarke, 01], which uses a UML

template for specifying composition of crosscutting concerns at a high level and maps

sequence diagrams into AspectJ code. Our composition pattern is represented with a

comprehensive framework rather than just a design-level pattern. Also a sequence dia-

gram is used here for illustrating the dynamic partnership, with each object in the se-

quence diagram corresponding to a partner when mapped to dynamic composition speci-

fication. In contrast, each object in a sequence diagram is synthesized to an aspect con-

struct in AspectJ in [Clarke, 01]. While AOP has been applied to distributed systems for

resolving crosscutting concerns ([Pulvermuller, 99], [Zhang, 03]), here we dedicate AOP

to the composition purpose: for composing components handling cross-cutting concerns

 115

in a modularized way, as well as for separating composition from components. Moreover,

we use the Jess inference engine to autonomously apply aspect weaving for component

composition. While the work described in [Yang, 02] also aims at applying an aspect-

oriented approach to dynamic adaptation, they only offer a means for making the AOP-

based adaptation ready, without presenting any solution on how to use rule engines to

trigger the adaptation. Additionally, [Duzan, 04] presents a prototype implementation in

the QuO toolkit for an aspect-based approach to programming QoS-adaptive applications.

In contrast, our work is targeted at loosely coupled service oriented computing as op-

posed to tightly coupled distributed object computing in QuO, where adaptation rules are

triggered by exceptions thrown from runtime.

4.6.3 Dynamic WS

The work on dynamic WS composition presented in this dissertation complements

the existent work on dynamic WS consumption [Verheecke, 04] and dynamic WS or-

chestration [Charfi, 04]. All three of these apply the AOP principle for modularizing dy-

namic adaptation. Specifically, in [Verheecke, 04], a Web Services Management Layer

(WSML) is introduced using dynamic AOP implementation language JAsCo to enable

hot-swapping and runtime management of services. WSML is a Java-based, client-side

software layer for consumption of WS. In [Charfi, 04], dynamic service orchestration is

realized with AO4BPEL, an aspect-oriented extension to BPEL4WS, which is a static

WS composition model. In contrast to those two work, the work presented in this disser-

tation is based on a P2P paradigm, without designed client/server roles as in [Verheecke,

 116

04], nor centralized composition model as in [Charfi, 04]; the advantage of using P2P

model over a centralized composition model has been described in Section 4.3.1.

4.6.4 Handling of non-functional concerns

Our work also incorporates non-functional concerns into WS component compo-

sition. Prior work such as IBM's Web Services Level Agreement [Dan, 02] and HP's Web

Service Management Language [Sahai, 02] incorporate the notion at a higher-level pres-

entation, rather than address it at a lower-level platform layer. We believe a treatment at a

platform layer is necessary for thoroughly addressing non-functional concerns for WS.

4.6.5 Cross-language weaving over .NET

In this work, dynamic WS composition is realized through cross-language weaving at

the CIL level in the .NET platform. CLAW [Lam, 02] is also a cross-language aspect weaver

in the .NET environment based on the CLR profiling interface. However, in contrast to our

instrumentation of hooks into base applications at JIT time, CLAW generates a dynamic

proxy at runtime, which lacks the flexibility of adjusting advice weaving decision proactively

and retroactively. While CLAW represents an assertive aspect weaving, the work presented

in this dissertation further incorporates a rule inference engine for autonomous aspect weav-

ing. Moreover, our work is the first to offer a solution in the middleware context based on

CIL code manipulation.

 117

4.7 Summary

This chapter presents a dynamic component composition approach under the ser-

vice-oriented paradigm in the .NET environment. By using intermediate code manipula-

tion, WS composition is

 possible to cross language boundaries so long as they are CLR-compliant;

 achieved in a non-invasive manner;

Also, WS composition is

 implemented not only in an assertive manner, but also in an autonomous manner

using a rule inference engine;

 specified using the AOP paradigm for separating composition specification from

components to be composed, and for modularized composition of components

handling cross-cutting concerns, with hooks used to weave and unweave advice at

runtime proactively and retroactively;

 specified with language neutral XML as the WS components can be exposed with

XML-based WSDL. The XML specification is further mapped to a language-

neutral type system CTS, with low-level CTS transparent to upper level composi-

tion decision makers.

Moreover, the composition rule specification can seamlessly incorporate the WS

selection specification based on pattern matching and first order logic of declarative logic

programming.

The experimental results show the profiling-based dynamic composition approach

is encouraging with the appropriate control over the profiling scope in the WS scenario.

 118

Even though the approach presented in this chapter is .NET based, the principle also ap-

plies to other platforms with adequate software vendor support.

 119

CHAPTER 5

FUTURE WORK

 This chapter explores some ideas for extending the work presented in the previous

two chapters, which are directly related to the model-driven approach, WS modeling, and

dynamic component composition.

5.1. Enrich ER-Based Semantic Intermediate Model Operations

In Chapter 3 the ER model is used as a semantic intermediate model for marshal-

ing and unmarshaling models. Just as the compiler can apply code optimization when

compiling application code, the marshaling process can be used to apply optimization

(e.g., reduce redundant models or relationships) for the original modeling language (ei-

ther UML or domain specific). Among a list of operations yet to be identified, one

straightforward operation is the merge operation, for which two ER intermediate models

can be merged based on their common entities. Consequently, model composition can be

realized in a layered manner. Currently, meta-model construction such as in GME is in a

monolithic fashion, which reduces human comprehensibility for a large scale meta-

model; meta-model construction is error-prone while errors are hard to be localized. A

modularized approach for meta-model construction through layered ER intermediate

model construction during marshaling and unmarshaling phase is desirable.

 120

Figure 5.1: Merger operation to enable layered model composition

Nevertheless, it is expected that more such operators are needed to introduce the

modularity and abstraction for meta-model /model construction.

5.2. Moving into GME+Eclipse

Tool support is of vital importance in software engineering discipline to promote

great ideas. At present, the model marshaling and unmarshaling process described in

Chapter 3 lacks tool support to integrate them together and make it a seamless process. In

[Zhou, 04], an ER modeling tool has been introduced as a plug-in in Eclipse44, an open-

source extensible Java-based Integrated Development Environment (IDE). With the Java-

based BON API available in GME 4, particularly its recent integration into Eclipse itself

44 http://www.eclipse.org

 121

as a plug-in, Eclipse can be used to seamlessly integrate the model marshaling and un-

marshaling process (as shown in Figure 3.2), with the ER modeling plug in exposing one

extension point to the GME BON API plug-in within the Eclipse environment.

Eclipse

GME
ER

modeler
BON

Figure 5.2: Eclipse-based tool integration for seamless model marshaling and unmarshal-
ing

Ultimately, GME meta-models and models can be directly exported to and from the ER

modeling environment in the Eclipse environment for seamless model marshaling and

unmarshaling. Figure 5.2 provides a tentative architecture for the tool integration de-

scribed above.

5.3 Aspect Management

The Aspect Library as shown in Figure 4.3 currently is stored in a flat structure, which

degrades the searching efficiency as well as restricts the extensibility of the advice li-

brary. To facilitate the evolution of the Aspect Library without affecting the dynamic run-

 122

time environment, a possible direction could be using the Adaptive Object-Model (AOM)

[Yoder, 02] to define an aspect as is shown in Figure 5.3.

JoinPoint Jo inPointType

-nam e
-type

PropertyTypeProperty

0..n type

type
0..n

0..n
0..nproperties properties

-befo re()
-a fte r()
-around()
-in troduce()

Aspect

QoSAspect CORBAAspect

ru le

0 ..n

s ta tegystra tegy

Figure 5.3: Adaptive Object Model for aspect definition

In AOM, the users’ object model is interpreted at runtime and can be changed

with immediate (but controlled) effect on the system interpreting it. The definition of a

domain model and rules for its integrity can be configured by domain experts external to

the execution of the program. It is a system that represents classes, attributes, and rela-

tionship as metadata. Users change the metadata (object model) to reflect the change in

the domain. AOM at its core composes smaller patterns such as TypeObject [Johnson,

98], Property [Foote, 98] pattern for structural description, and Strategy pattern [Gamma,

95] for behavior description. In Figure 5.3, TypeObject and Property patterns are used to

represent the join point model, and the Strategy pattern to define the advices to be associ-

ated with a service type (a.k.a., the JoinPointType in Figure 5.3). As is indicated from

 123

Figure 5.3, one join point type can be associated with multiple aspects, and one join point

type also corresponds to multiple join points (represented by the syntactical structure of

the base program). As the structure in Figure 5.3 is basically an ER model (with relation-

ship not explicitly modelled, however), this representation can persist in either an object-

oriented database or other forms such as an XML file. Consequently, an aspect repository

can be comprised of a collection of such representations.

5.4 Rule Management

5.4.1 Model-driven configuration

With Jess as the underlying rule inference engine, rule specification has to be

Jess-based, which is not only error prone and takes a new learning curve for the begin-

ners, but also lacks reusability across different rule engine systems, even though the rules

are the same semantically. As such, a model-driven approach to raise the rule specifica-

tion at a higher-level is desirable to address this issue. The MIC paradigm can be lever-

aged to create a meta-model for rule specifications in general and a Jess interpreter in

particular for synthesizing Jess rule specification code from high-level models.

5.4.2 Mobile agent based configuration

As is illustrated in Figure 4.3, the fact base is made public for enabling adaptive

composition during run time in the peer-to-peer component composition scenario, in

which facts are dynamically added into the base, and upon the matching of a rule, com-

position strategy can be dynamically applied. In the current implementation updating the

fact base uses a push mode, i.e., a remote component will write any new facts back to the

 124

fact base of the local component, such as in Figure 5.4 (a), remote component B adds

new facts into the fact base F1 of a local component A.

B

A

F1

F2
B

A

F1

F2mobile
agent

push mode pull mode

(a) (b)

Figure 5.4: Push vs. pull mode in updating fact base - A represents a local component; B
represents a remote component; F1 and F2 represent the fact base of the corresponding
component.

 The problem with the pull mode is that there may be some useless fact updates

which will waste the bandwidth at the same time. To save the bandwidth in the distrib-

uted environment, a mobile agent can be moved around to the destined remote compo-

nent site to monitor and handle only the interesting facts (which is a pull mode) generated

at the remote component site only, which in turn can trigger dynamic composition at the

local site. Therefore, using the mobile agent, the fact bases can be federated in the P2P

component composition scenario as shown in Figure 4.2, and the adaptation based on the

remote fact feedback can be more agile and efficient because of the reduced message

passing in between. A prototype mobile agent searching environment has been described

 125

in [Cao-a, 02] (which is further detailed in Appendix C), with related component specifi-

cation information on each component site being exposed into the Voyager45 mobile

searching environment for mobile agents to search the hosted components. Likewise, the

fact base described in Figure 4.3 can be exposed into a mobile searching environment to

be monitored or written by mobile agent. This entails other security issues regarding the

fact base access control, which are yet to be investigated as well.

45 http://www.objectspace.com

 126

CHAPTER 6

CONCLUSION

WS has emerged as a new paradigm of component-based software development,

which is based on the open transportation protocol HTTP for interoperation and standard

description language XML for service presentation. Moreover, WS brings forth a set of

infrastructures following SOA to enable distributed software systems to interoperate

across heterogeneous platforms, which expands the scale of software component reuse in

the networked environment. With the wide research and development support from both

industry and academia, WS is gaining its momentum toward wide adoption in the soft-

ware industry. As such, two directions toward WS application can be seen in near the fu-

ture: 1) the migration of legacy distributed software systems toward WS applications; 2)

the innovation of new infrastructures, and languages in support of WS application devel-

opment. The contribution of this dissertation aligns well with those two directions, which

is summarized as follows.

For the migration of legacy software system to WS applications, current practice

remains on a manual, language specific and ad-hoc process, which is error prone and not

efficient. As such, one of the contributions of this dissertation is to present a model-

driven approach in Chapter 3 to reengineering legacy software systems to WS applica-

tions to resolve the aforementioned issues. This technique is based on the MIC paradigm,

but this dissertation in turn contributes to MIC in providing a systematic (as opposed to

 127

the existing ad-hoc, error-prone) meta-model construction approach based on the idea of

model marshaling and unmarshaling.

Chapter 4 presents an infrastructural contribution to dynamic WS composition.

Dynamic WS composition is necessary for both ensuring seamless dynamic service con-

suming experiences, and adapting services provisioning to meet non-functional require-

ments such as the QoS and economical concerns while maintaining the service availabil-

ity. That chapter not only offers a dynamic composition enabling technology based on

runtime CIL manipulation on the .NET platform, but also presents the composition para-

digm based on the AOP approach which is used not only to separate the composition

specification from the component base, but also leverages the AOP for handling the

composition of components addressing crosscutting concerns, with hook code

instrumented during CIL manipulation time for both retroactive and proactive dynami

adaptation. Moreover, a rule inference engine is introduced into the dynamic compositio

architecture for both accepting feedback from composing components, and monitoring

the current runtime environment for firing composition strategies. This offers a mea

autonomous composition complementing the assertive composition. Both autonomous

and assertive composition are enacted by the runtime, but for the latter, the composition

strategies are specified without considering the changing runtime status, while for the

former, they are specified based on the runtime, which is necessary in such scenarios as

self-healing and fault-tolerance. Last but not the least, the declarative logic programming,

with its pattern binding and first-order logic, offers a sufficient means to specify compo-

nent selection, which can be seamlessly integrated into component composition rule

specification and executed by the rule inference engine.

c

n

ns for

 128

It can be seen that while WS is a promising technology for evolving distributed

component-based software development, it is still in its early stage and both industry and

academia research efforts are required to further drive the development of WS technol-

ogy. As such, a cross-discipline treatment is necessary toward that goal. This dissertation

showcases the application of state-of-the-art software engineering techniques as well the

programming language approaches to the WS technology development, such as MIC,

AOP, logic programming. On the other hand, the approaches presented in this disserta-

tion further contributes to the software engineering field, such as model-marshaling and

unmarshaling for model assets interchange and systematic meta-model elicitation, and the

dynamic composition architecture, which applies to autonomous distributed component

composition other than WS.

 129

LIST OF REFERENCES

[Aßmann, 03] U.Aßmann, Invasive Software Composition, Springer-Verlag, 2003.

[Booch, 99] G. Booch, J. Rumbaugh, I. Jacobson, The Unified Modeling Language User
Guide, Addison-Wesley, 1999.

[Brand, 01] M.G. J. van den Brand, J. Heering, H. A. de Jong, M. de Jonge, T. Kuipers,
P. Klint, L. Moonen, P.A. Olivier, J. Scheerder, J. J. Vinju, E. Visser, J. Visser, The
ASF+SDF Meta-Environment: a Component-Based Language Development Environ-
ment. Compiler Construction, In Proc. Int. Conf. On Compiler Construction, April 2001,
365-370.

[Brown, 00] A. W. Brown, Large-Scale Component-Based Development, Prentice Hall,
2000.

[Bryant, 02] B. R. Bryant, B.-S. Lee, Two-Level Grammar as an Object-Oriented Re-
quirements Specification Language,. In Proc. Hawaii Int. Conf. System Sciences, Jan
2002, http://www.hicss.hawaii.edu/HICSS_35/HICSSpapers/PDFdocuments/ STDSL01
.pdf.

[Burt, 03] C. C. Burt, B. R. Bryant, R. R. Raje, A. M. Olson, M. Auguston, Model Driven
Security: Unification of Authorization Models for Fine-Grain Access Control, In Proc
IEEE International Enterprise Distributed Object Computing Conference, September
2003, 159-171.

[Cao-a, 02] F. Cao, B. R. Bryant, R. R. Raje, M. Auguston, A. M. Olson, C. C. Burt,
Specifying Heterogeneous Distributed Component, In Proc. Annual ACM Southeast
Conference, April 2002, 199-200.

[Cao-b, 02] F. Cao, B. R. Bryant, R. R. Raje, M. Auguston, A. M Olson, C. C. Burt,
Component Specification and Wrapper/Glue Code Generation with Two-Level Grammar
Using Domain Specific Knowledge, In Proc. Int. Conf. on Formal Engineering Methods,
October 2002, 103-107.

[Cao-c, 02] F. Cao, B. R. Bryant, C. C. Burt, R. R. Raje, M. Auguston, A. M. Olson, A
Translation Approach to Component Specification, In Proc. ACM Conf. On Object-
Oriented Programming, Systems, Languages and Applications Companion, November
2002, 54-55.

 130

[Cao-a, 03] F. Cao, Bryant, Z. Huang, B. R. Bryant, C. C. Burt, R. R. Raje, A. M. Olson,
M. Auguston, Automating Feature-Oriented Domain Analysis , In Proc. Int. Conf on
Software Engineering, Research and Practice, June 2003, 944-949.

[Cao-b, 03] F. Cao, B. R. Bryant, R. R. Raje, M. Auguston, A. M. Olson, C. C. Burt, A
sembling Components with Aspect-Oriented Modeling/Specification, In Proc Int. Con
On Unified Modeling Language Workshop in Software Model Engineering, Octobe
2003, http://www.metamodel.com/wisme-2003/12.pdf.

s-
f.

r

odel-
19-

[Cao-c, 03] F. Cao, B. R. Bryant, C. C. Burt, J. G. Gray, R. R. Raje, A. M. Olson, M.
Auguston, Modeling Web Services: toward System Integration in UniFrame, In Proc.
World Conf. on Integrated Design and Process Technology, Dec 2003, 83-91.

[Cao, 04] F. Cao, B. R. Bryant, W. Zhao, C. C. Burt, J. G. Gray, R. R. Raje, A. M. Olson,
M. Auguston, A Meta-modeling Approach to Web Services, In Proc. IEEE Int. Conf. on
Web Services, July 2004, 796-799.

[Cao-a, 05] F. Cao, B. R. Bryant, R. R. Raje, M. Auguston, A. M. Olson, C. C. Burt, A
Component Assembly Approach Based on Aspect-Oriented Generative Domain M
ing, Electronic Notes in Theoretical Computer Science, 114, Elsevier Science, 2005, 1
136.

[Cao-b, 05] F Cao, B. R. Bryant, W. Zhao, C. C. Burt, R. R. Raje, A. M. Olson, M.
Auguston,. Marshaling and Unmarshaling Models using Entity-Relationship Model, In
Proc. Annual ACM Symposium on Applied Computing, March 2005, 1553-1557.

[Cao-c, 05] F. Cao, B. R. Bryant, S.-H. Liu, W. Zhao, A Non-Invasive Approach to
Dynamic Web Service Provisioning, In Proc. IEEE Int. Conf. on Web Services, July
2005, (to appear).

[Cao-d, 05] F. Cao, B. R. Bryant, W. Zhao, C. C. Burt, R. R. Raje, A. M. Olson, M.
Auguston, Model-Driven Reengineering Legacy Software Systems to Web Services,
2005, (submitted) .

[Cao-e, 05] F. Cao, B. R. Bryant, R. R. Raje, A. M. Olson, M. Auguston, W. Zhao, C. C.
Burt, A Non-Invasive Approach to Assertive and Autonomous Dynamic Component
Composition in Service-Oriented Paradigm, 2005, (submitted).

[Charfi, 04] A. Charfi, M. Mezini, Aspect-Oriented Web Service Composition with
AO4BPEL, In Proc. European Conference on Web Services 2004, September 2004, 168-
182.

[Cheesman, 01] J. Cheesman, J. Daniels, UML Components, Addison-Wesley, 2001.

[Chen, 76] P. P. Chen, The Entity-Relationship Model: Toward a Unified View of Data,
ACM Transactions on Database Systems, 1(1), 1976, 9-36.

 131

[Chen, 01] Q. Chen, M. Hsu, Inter-Enterprise Collaborative Business Process
Management, In Proc. Int. Conf. on Data Engineering, April 2001, 253-260.
[Choi, 00] J. P.Choi, Aspect-Oriented Programming with Enterprise JavaBeans, In Proc
IEEE International Enterprise Distributed Object Computing Conference, September
2000, 252-261.

[Clarke, 01] S. Clarke, R. J. Walker, Composition Patterns: An Approach to Designing
Reusable Aspects, In Proc.IEEE Int. Conf. on Software Engineering, May 2001, 5-14.

[Clarke, 02] S. Clarke, Extending Standard UML with Model Composition Semantics,
Sci. Comput. Program., 44(1), 2002, 71-100.

[Colan, 04] M. Colan, Service-Oriented Architecture Expands the Vision of Web
Services, 2004, http://www-106.ibm.com/developerworks/webservices/library/ws-
soaintro.html.

[Czarnecki, 00] K. Czarnecki, U. W. Eisenecker, Generative Programming: Methods,
Tools, and Applications, Addison Wesley, 2000.

[Dan, 02] A. Dan, A. R. Franck, A. Keller, R. King, H. Ludwig, Web Service Level
Agreement (WSLA) Language Specification, 2002, http://dwdemos.alphaworks.ibm.com
/wstk/comon/wstkdoc/services/utilties/wslaauthoring/WebServiceLevelAgreementLangu
age.html.

[Deursen, 02] A. van Deursen, P. Klint, Domain-specific Language Design Requires Fea-
ture Descriptions, Journal of Computing and Information Technology, 10(1), 2002, 1-17.

[Devanbu, 96] P. Devanbu, S. Karstu, W. Melo, W. Thomas, Analytical and Empirical
Evaluation of Software Reuse Metrics, In Proc. IEEE Int. Conf. on Software Engineer-
ing, March 1996, 189-199.

[Duclos, 02] F. Duclos, J. Estublier, P. Morat, Describing and using non functional as-
pects in component based applications, In Proc Int. Conf. on Aspect-oriented Software
Development, April 2002, 65-75.

[Duzan, 04] G. Duzan, J. P. Loyall, R. E. Schantz, R. Shapiro, J. A. Zinky, Building
Adaptive Distributed Applications with Middleware and Aspects, In Proc. Int. Conf. on
Aspect-Oriented Software Development, March 2004, 66-73.

[Edwards, 04] G. T. Edwards, G. Deng, D. C. Schmidt, A. S. Gokhale, B. Natarajan,
Model-Driven Configuration and Deployment of Component Middleware Pub-
lish/Subscribe Services, In Proc. Int. Conf. on Generative Programming and Component
Engineering, October 2004, 337-360.

 132

[Ernst, 02] J. Ernst, What are the Differences Between a Vocabulary, a Taxonomy, a
Thesaurus, an Ontology, and a Meta-Model?, http://www.metamodel.com/article.php?
story=20030115211223271.

[Foote, 98] B. Foote, J. W. Yoder, Metadata and Active Object-Models, In Proc. Confer-
ence on Patterns Languages of Programs, August, 1998, http://jerry.cs.uiuc.edu/~plop/
plop98/ final_submissions/P59.pdf.

[Frankel, 03] D. S. Frankel, Model Driven Architecture: Applying MDA to Enterprise
Computing, Wiley, 2003.

[Friedman-Hill, 05] E. J. Friedman-Hill, Jess 7.0, The Rule Engine for the Java Platform,
Sandia National Laboratories, 2005.

[Gamma, 95] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns, Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995.

[Garlan, 00] D. Garlan, R. T. Monroe, D. Wile, Acme: Architectural Description of
Component-Based Systems, Foundations of Component-Based Systems, ed. G. T. Leav-
ens, and M. Sitaraman, Cambridge University Press, 2000, 47-68.

[Göbel, 04] S. Göbel, C. Pohl, S. Röttger, S. Zschaler, The COMQUAD Component
Model: Enabling Dynamic Selection of Implementations by Weaving Non-Functional
Aspects, In Proc. Int. Conf. on Aspect-Oriented Software Development, March 2004, 74-
82.

[Gokhale, 04] A. Gokhale, D. C. Schmidt, B. Natarajan, J. Gray, N. Wang, Model Driven
Middleware, Middleware for Communications, ed. Q. Mahmoud, John Wiley and Sons,
2004, 163-187.

[Gough, 02] J. Gough, Compiling for the .NET Common Language Runtime (CLR),
Prentice Hall PTR, 2002.

[Graham,02] S. Graham, S. Simeonov, T. Boubez, D. Davis, G. Daniels, Y. Nakamura,
R. Neyama, Building Web Services with Java, SAMS, 2002.

[Gray, 01] J. Gray, T. Bapty, S. Neema, J. Tuck, Handling Crosscutting Constraints in
Domain-Specific Modeling, Communications of the ACM , 44(10), 2001, 87-93.

[Greenfield, 04] J. Greenfield, K. Short, Software Factories: Assembling Applications
with Patterns, Models, Frameworks, and Tools, Wiley, 2004.

[Grundy, 00] J. C. Grundy, Multi-Perspective Specification, Design and Implementation
of Components Using Aspects, Int. Journal of Software Engineering and Knowledge En-
gineering, 10(6), World Scientific, 2000, 713-734.

 133

[Hausmann, 04] J. H. Hausmann, R. Heckel, M. Lohmann, Model-Based Discovery of
Web Services. In Proc. IEEE Int. Conf. on Web Services, July 2004, 324-331.

[Heineman, 01] G. T. Heineman, W. T. Councill, Component Based Software Engineer-
ing: Putting the Pieces Together, Addison-Wesley, 2001.

[Higuera, 00] C. de la Higuera, Current Trends in Grammatical Inference, In Proc. Joint
IAPR Int. Workshops SSPR & SPR, September 2000, 28-31.

[Hissam, 03] S. A. Hissam, G. A. Moreno, J. A. Stafford, K. C. Wallnau, Enabling Pre-
dictable Assembly, Journal of Systems and Software, 65(3), 2003, 185-198.

[Hölzle, 93] U. Hölzle, Integrating Independently-Developed Components in Object-
Oriented Languages, In Proc. European Conf. on Object-Oriented Programming, July
1993, 36-56.

[Hunleth, 01] F. Hunleth, R. Cytron, C. Gill, Building Customized Middleware Using
Aspect-Oriented Programming, In Proc. ACM Conf. on Object-Oriented Programming,
Systems, Languages and Applications Workshop on Advanced Separation of Concerns,
October 2001.

[ISIS, 01]. ISIS, GME 2000 User's Manual, Version 2.0, Vanderbilt University, 2001.

[Johnson, 98] R. Johnson, B. Wolf, Type Object, In Proc. Conf. on Pattern Languages of
Program Design, October 1998, 47-65.

[Kang, 90] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, A. S. Peterson, Feature-
oriented Domain Analysis (FODA) Feasibility Study. Technical Report, CMU/SEI-90-
TR-21, Software Engineering Institute, Carnegie Mellon University, 1990.

[Karsai, 03] G. Karsai, J. Sztipanovits, A. Ledeczi, T. Bapty, Model-Integrated Develop-
ment of Embedded Software, IEEE, 91(1), 2003, 145-164.

[Keller, 98] R. K. Keller, R. Schauer, Design Components: Towards Software Composi-
tion at the Design Level, In Proc. Int. Conf. on Software Engineering, April 1998, 302-
311.

[Kiczales, 97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.V. Lopes, J.-M. Lo-
ingtier, J. Irwin, Aspect-Oriented Programming, In Proc. European Conf. on Object-
Oriented Programming, June 1997, 220-242.

[Kiczales, 01] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. G. Griswold,
An Overview of AspectJ, In Proc. European Conf. on Object-Oriented Programming,
June 2001, 327-353.

 134

[Lam, 02] J. Lam, Cross-Language Load-Time Aspect Weaving on Microsoft’s Common
Language Runtime, Demo at Int. Conf. on Aspect-Oriented Software Development, April,
2002.

[Leavens, 01] G. T. Leavens, M. Sitaraman, Foundations of Component-Based Systems,
Cambridge, 2000.

[Lédeczi, 01] Á. Lédeczi, A. Bakay, M. Maroti, P. Volgyesi, G. Nordstrom, J. Sprinkle,
G. Karsai, Composing Domain-Specific Design Environments, IEEE Computer, 34(11),
2001, 44-51.

[Lédeczi, 03] Á. Lédeczi, J. Davis, S. Neema, A. Agrawal, Modeling Methodology for
Integrated Simulation of Embedded Systems, ACM Transactions on Modeling and Com-
puter Simulation, 13(1), 2003, 82-103.

[Lee, 02] B.-S. Lee, B. R. Bryant, Automated Conversion from Requirements Documen-
tation to an Object-Oriented Formal Specification Language, In Proc. Annual ACM
Symposium on Applied Computing, March 2002, 932-936.

[Lieberherr, 99] K. Lieberherr, D. Lorenz, M. Mezini, Programming with Aspectual
Components, Technical Report, NU-CCS-99-01, 1999, http://www.ccs.neu.edu/research/
demeter/papers/aspectual-comps/aspectual.ps.

[Lopes, 03] D. Lopes, S. Hammoudi, Web Service in the Context of MDA, In Proc. Int.
Conf. on Web Services, June 2003, 424-427.

[Mantell, 03] K. Mantell, From UML to BPEL: Model Driven Architecture in a Web Ser-
vices World, http://www-106.ibm.com/developerworks/webservices/library/ws-uml2bpel/.

[McIlroy,69] D. McIlroy, Mass-produced Software Components, Software Engineering
Concepts and Techniques, In Proc. 1968 NATO Conf. on Software Engineering, 1969,
138-155.

[Mezini, 98] M. Mezini, K. J. Lieberherr, Adaptive Plug-and-Play Components for Evo-
lutionary Software Development, In Proc. ACM Conf. on Object-Oriented Programming
Systems, Languages, and Applications, October 1998, 97-116.

[Microsoft, 02] Microsoft, Common Language Runtime Profiling, Microsoft Corporation,
2002.

[Newcomer, 02] E. Newcomer, Understanding Web Services, Addison Wesley, 2002.

[Olson, 05] A. M. Olson, R. R. Raje, B. R. Bryant, C. C. Burt, M. Auguston, UniFrame-a
Unified Framework for Developing Service-Oriented, Component-Based, Distributed
Software Systems, Service-Oriented Software System Engineering: Challenges and Prac-
tices, Idea Group, 2005, 68-87.

 135

[Parnas, 72] Parnas, D., On the Criteria To Be Used in Decomposing Systems into Mod-
ules, Communications of the ACM, 15(12), 1972, 1053-1058.

[Pulvermuller, 99] E. Pulvermuller, H. Klaeren, A. Speck, Aspects in Distributed Envi-
ronments, In Proc. Int. Symposium on Generative Component-Based Software Engineer-
ing, September 1999, 37-48.

[Raje, 00] R. Raje, UMM: Unified Meta-object Model for Open Distributed Systems, In
Proc. IEEE Int. Conf. of Algorithms and Architecture for Parallel Processing, 2000, 454-
465.

[Raje, 02] R. R. Raje, M. Auguston, B. R. Bryant, A. M. Olson, C. C. Burt, A Quality of
Service-based Framework for Creating Distributed Heterogeneous Software Components,
Concurrency and Computation: Practice and Experience, 14(12), 2002, 1009-1034.

[Sahai, 02] A. Sahai, V. Machiraju, M. Sayal, L. J. Jin, F. Casati, Automated SLA Moni-
toring for Web Services, 2002, http://www.hpl.hp.com/techreports/2002/HPL-2002-191
.pdf

[Seiter, 99] L. M. Seiter, M. Mezini, K. J. Lieberherr, Dynamic Component Gluing, In
Proc. Int. Symposium on Generative Programming and Component-Based Software En-
gineering, September 1999, 134-164.

[Siram, 02] N. N. Siram, R. R. Raje, A. M. Olson, B. R. Bryant, C. C. Burt, M. Augus-
ton, An Architecture for the UniFrame Resource Discovery Service, In Proc.Int. Work-
shop on Software Engineering and Middleware, May 2002, 22-38.

[Sivashanmugam, 03] K. Sivashanmugam, K. Verma, A. Sheth, J. Miller, Adding Seman-
tics to Web Services Standards, In Proc Int. Conf. on Web Services, June 2003, 395-401

[Straeten, 01] R. V. D. Straeten, J. Brichau, Features and Features Interactions in Soft-
ware Engineering using Logic, In Proc European Conf on Object-Oriented Programming
Workshop on Feature Interaction in Composed Systems, June, 2001.

[Stutz, 03] D. Stutz, T. Neward, G. Shilling, Shared Source CLI – Essentials, O’Reilly
Press, 2003.

[Suvée, 03] D. Suvée, W. Vanderperren, V. Jonckers, JAsCo: an Aspect Oriented Ap-
proach Tailored for Component-Based Software Development, In Proc. Int. Conf. on As-
pect-Oriented Software Development, March, 2003, 21-29.

[Szyperski, 02] C. Szyperski, D. Gruntz, S. Murer, Component Software: Beyond Object-
Oriented Programming, 2nd ed., Addison-Wesley/ACM, 2002.

 136

[Ubayashi, 02] N. Ubayashi, T. Tamai, Aspect-Oriented Programming with Model
Checking, In Proc. Int. Conf. on Aspect-Oriented Software Development, April, 2002,
148-154.

[Verheecke, 04] B. Verheecke, M. A. Cibrán, W. Vanderperren, D. Suvée, V. Jonckers, AOP
for Dynamic Configuration and Management of Web services, Int. Journal on Web Services
Research, 1(3), 2004, 25-41.

[Yang, 02] Z. Yang, B. H. C. Cheng, R. E. K. Stirewalt, J. Sowell, S. M. Sadjadi, P. K.
McKinley, An Aspect-Oriented Approach to Dynamic Adaptation, In Proc. The First
Workshop on Self-healing Systems, November 2002, 85-92.

[Yoder, 02] J. W. Yoder, R. E. Johnson, The Adaptive Object-Model Architectural Style,
In Proc. the Working IEEE/IFIP Conf. on Software Architecture at the World Computer
Congress, August 2002, pp. 3-27.

[Zhang, 03] C. Zhang, H.-A. Jacobsen, Refactoring Middleware with Aspects, IEEE
Trans. Parallel Distrib. Syst. 14(11), 2003, 1058-1073.

[Zhao, 03] W. Zhao, B. R. Bryant, C. C. Burt , J. G. Gray, R. R. Raje, A. M. Olson, M.
Auguston, A Generative and Model Driven Framework for Automated Software Product
Generation. In Proc Workshop on Component-Based Software Engineering: Automated
Reasoning and Prediction, May 2003, http://www.csse.monash.edu.au/~hws/cgi-bin/
CBSE6/ Proceedings/proceedings.cgi.

[Zhou, 04] S. Zhou, C. Xu, H. Wu, J. Zhang, Y. Lin, J. Wang, J. Gray, B. R. Bryant, E-
R Modeler: A Database Modeling Toolkit for Eclipse, In Proc. 42th ACM Southeast
Conf., April 2004, 160-165.

 137

APPENDIX A

AN EXAMPLE OF GENERATIVE MULTI-STAGE COMPONENT ASSEMBLY

 138

Assume that the component A is a banking domain client component written in

Java RMI requesting some banking service from a server. Below is the partial specifica-

tion of A’s CDL:

A.0 Component A
A.1 BankOperation:: Service.
A.2 Bank::BusinessDomain.
A.3 Platform::TechDomain.
A.4 requires BankOperations: Platform= “RMI”.
A.5 end Component A.

Below is an ADL for a QoS measurement aspect stored in the Aspect Library and

AUL to use that aspect.

 Aspect QoSMeter
 advises: BankOperation.
 before: EventTrace.setBeginTime().
 after: EventTrace.setEndTime().
 end Aspect QoSMeter

apply QoSMeter on A.BankOperation.

The above specification of component A weaved with QoSMeter aspects will be

translated into the following aspectual component specification:

B.0 aspect A
B.1 Bankoperation:: Service.
B.2 Bank::BusinessDomain.
B.3 expect Bankoperations.
B.4 expect wrap Argument. //usage interface
B.5 replace Bankoperation: //modification interface
B.6 tTrace.setBeginTime(). Even
B.7 expected().wrap(<<Platform= “RMI”>>).

//each <<..>> corresponds
//to each expression in right hand side of “:” of A4

B.8 EventTrace.setEndTime().
B.9 end aspect A

B.6 and B.8 are weaved from the QoSMeter aspect. Note those lines prefixed by

expect denote operations signatures that are expected to be supplied with advice, and the

expect-directive corresponds to the join points in AOP. Expected operations are either

 139

used (usage interface) or modified (modification interface, preceded with replace) in the

aspectual component definition. For details please see [Lieberherr, 99]. Also lines B.6-

B.8 provide advice (reimplementation) for the associated operations to be specified in the

connector part below.

Assume the component B is a banking domain server component implemented in

CORBA providing some banking services.

C.0 Component B.
C.1 Withdraw, Deposit:: Port;Bankoperation.
C.2 Bank::Domain.
C.3 Platform::TechDomain .
C.4 provides Bankoperation: Platform= “CORBA”.
C.5 end Component B.

Note in line C.1, the two types denoted in the right hand side of “::” means both withdraw

and deposit are not only Ports (which means they are banking services offered to external

components), but also Bankoperations,.

Below is an ADL for an Access Control aspect [Burt, 03] from Aspect Library.

Aspect AccessControl
 Advises: Service.
 before: Log.Check().
end Aspect AccessControl

This aspect can be applied to any Service (meta-type, thus applicable to With-

draw). Consequently, before each call to Service, Log.Check() will be called to verify the

credentials.

The following specification will be translated from the component B specification

with the AUL of preceding aspect AccessControl.

D.0 connector A-B
D.1 {B.Withdraw, B.Deposit} is BankOperation.

//join points
D.2 wrap(Argument):
D.3 apply AccessControl on B.WithDraw, B.Deposit,
D.4 apply RMIAspect on BankOperation when

 140

 Argument.getname("Plaform")=="RMI"
D.5 end connector A-B

Note that lines D.2-D.5 further implement the advice part for the join points (here,

Withdraw and Deposit operations). The body of wrap is to wrap the BankOperation with

RMI specific code. This is similar to [Pulvermuller, 99], in which CORBA related opera-

tions are modularized as aspects and then woven into the application core to derive a

CORBA implementation. The difference here is that, those RMI or CORBA related as-

pects will be pre-built and retrieved from Aspect Library, and they are represented with

high-level specifications (in ADL) rather than at the application code level. Upon weav-

ing in Stage 4 of Figure 2.22, the wrap routine in the connector specification will be

weaved into the aspectual component specification.

The example illustrated in this section shows that the assembly-related concerns

(functional and non-functional) of two components can be handled in separate modules

(here in the aspectual component definition and connector specification) from the com-

ponent specification itself. ADL and AUL provide leverage for the assembly process it-

self to be easily specified and managed. Consequently the assembly can be implemented

by using a weaver to weave assembly-specific advices together with component specifi-

cations.

 141

APPENDIX B

HOOK INSTRUMENTATION THROUGH BINARY CODE MANIPULATION

 142

 This part illustrates the layout of binary code before and after the hook (see Figure

4.4) instrumentation for a random method body as shown below. Below is a C# method

that is to be instrumented with hook following the template in Figure 4.4. Please ignore

the bad programming style as to using “goto” statement—this is purely used for testing

purpose.

 public static void Main() {

if(u==10) goto exit;
 u++;

Console.WriteLine("u: {0}",u);
long l1= DateTime.Now.Ticks;
int n;

 myFoo();
long l2= DateTime.Now.Ticks;
Console.WriteLine("Elapsed: {0}",l2-l1);
anothermyFoo();
long l3= DateTime.Now.Ticks;
Console.WriteLine("Second time Elapsed (without aspect): {0}",

 l3-l2);

string g="yes";
myFffff(g);
int jp=10;

if(jp==11)
goto here;

else return;

 here:
 jp++;
 exit:

return;
 }
 …..
 …..

Figure B.1: A C# method to be instrumented with hook

 143

 0x7E 0x01 0x00 0x00 0x04 0x1F 0x0A 0x33
 0x05 0x38 0x9D 0x00 0x00 0x00 0x7E 0x01
 0x00 0x00 0x04 0x17 0x58 0x80 0x01 0x00
 0x00 0x04 0x72 0x01 0x00 0x00 0x70 0x7E
 0x01 0x00 0x00 0x04 0x8C 0x03 0x00 0x00
 0x01 0x28 0x02 0x00 0x00 0x0A 0x28 0x03
 0x00 0x00 0x0A 0x13 0x06 0x12 0x06 0x28
 0x04 0x00 0x00 0x0A 0x0A 0x28 0x02 0x00
 0x00 0x06 0x28 0x03 0x00 0x00 0x0A 0x13
 0x06 0x12 0x06 0x28 0x04 0x00 0x00 0x0A
 0x0C 0x72 0x0F 0x00 0x00 0x70 0x08 0x06
 0x59 0x8C 0x06 0x00 0x00 0x01 0x28 0x02
 0x00 0x00 0x0A 0x28 0x03 0x00 0x00 0x06
 0x28 0x03 0x00 0x00 0x0A 0x13 0x06 0x12
 0x06 0x28 0x04 0x00 0x00 0x0A 0x0D 0x72
 0x29 0x00 0x00 0x70 0x09 0x08 0x59 0x8C
 0x06 0x00 0x00 0x01 0x28 0x02 0x00 0x00
 0x0A 0x72 0x7D 0x00 0x00 0x70 0x13 0x04
 0x11 0x04 0x28 0x04 0x00 0x00 0x06 0x1F
 0x0A 0x13 0x05 0x11 0x05 0x1F 0x0B 0x33
 0x02 0x2B 0x02 0x2B 0x08 0x11 0x05 0x17
 0x58 0x13 0x05 0x2B 0x00 0x2A

 0x72 0x10 0x01 0x00 0x70 0x28 0x07 0x00
 0x00 0x0A 0x26 0x72 0x86 0x01 0x00 0x70
 0x28 0x07 0x00 0x00 0x0A 0x3A 0xAE 0x00
 0x00 0x00 0x7E 0x01 0x00 0x00 0x04 0x1F
 0x0A 0x33 0x05 0x38 0x9D 0x00 0x00 0x00
 0x7E 0x01 0x00 0x00 0x04 0x17 0x58 0x80
 0x01 0x00 0x00 0x04 0x72 0x01 0x00 0x00
 0x70 0x7E 0x01 0x00 0x00 0x04 0x8C 0x03
 0x00 0x00 0x01 0x28 0x02 0x00 0x00 0x0A
 0x28 0x03 0x00 0x00 0x0A 0x13 0x06 0x12
 0x06 0x28 0x04 0x00 0x00 0x0A 0x0A 0x28
 0x02 0x00 0x00 0x06 0x28 0x03 0x00 0x00
 0x0A 0x13 0x06 0x12 0x06 0x28 0x04 0x00
 0x00 0x0A 0x0C 0x72 0x0F 0x00 0x00 0x70
 0x08 0x06 0x59 0x8C 0x06 0x00 0x00 0x01
 0x28 0x02 0x00 0x00 0x0A 0x28 0x03 0x00
 0x00 0x06 0x28 0x03 0x00 0x00 0x0A 0x13
 0x06 0x12 0x06 0x28 0x04 0x00 0x00 0x0A
 0x0D 0x72 0x29 0x00 0x00 0x70 0x09 0x08
 0x59 0x8C 0x06 0x00 0x00 0x01 0x28 0x02
 0x00 0x00 0x0A 0x72 0x7D 0x00 0x00 0x70
 0x13 0x04 0x11 0x04 0x28 0x04 0x00 0x00
 0x06 0x1F 0x0A 0x13 0x05 0x11 0x05 0x1F
 0x0B 0x33 0x02 0x2B 0x02 0x2B 0x08 0x11
 0x05 0x17 0x58 0x13 0x05 0x2B 0x00 0x00
 0x72 0x4C 0x01 0x00 0x70 0x28 0x07 0x00
 0x00 0x0A 0x26 0x2A

(a) Binary code for the C# method before being
instrumented with hook.

(b) Binary code for the C# method after being
instrumented with hook: the underlined part
corresponds to the binary code of the original
function; the bold numbers represent the
opcode for operators in the hook, with the
following non-bold numbers the token values for
the corresponding operands.

Figure B.2: Hook instrumentation through binary code manipulation

Figure B.2-a illustrates the binary code representation for the method body in

Figure B.1, which is the encoding in the operator and token value for the operand. Note

that the token value has a pre-defined fixed length, which provides each operator in CIL

arguments of fixed length as opposed to arguments of varied length. This facilitates the

parsing and verification of CIL code. The binary code output in Figure B.20-a is achieved

 144

by parsing the function body (the handle of which is retrieved through CLR profiling in-

terface API) and traversing the (operator, operand) pairs based on length information of

the operator and its associated operand. The CLR profiling API used to intercept the JIT

event in CLR is:

HRESULT JITCompilationStarted(FunctionID functionId,

BOOL fIsSafeToBlock)

The functionID is the handle for the function being JIT-compiled, which can be used

to get its binary representation, and all its metadata information. After the handle to the

binary representation of the original method is accessed, the function can be manipulated

at the binary code level. Figure B.2-b represents the binary code for the method after be-

ing manipulated. Table B.1 shows the corresponding opcode for the operators used in the

hook in Figure 4.4.

Table B.1: Opcodes for operators in CIL

operator in CIL opcode
ldstr 0x72
call 0x28
pop 0x26

brtrue 0x3A
ret 0x2A

After the binary code is changed, it can be reset as a function body to be JIT-

compiled. This uses the CLR profiling interface API as shown below:

 145

HRESULT SetILFunctionBody(ModuleID moduleId,

mdMethodDef method, LPCBYTE pbNewILMethodHeader, ULONG

cbNewMethod)

The moduleId represents the handle of the given module; the method represents the

metadata token for captured method; the pbNewILMethodHeader is the pointer to the

new CIL method header; the cbNewMethod is the pointer to the size of the new CIL

method header. Note in Figure B.2-b, the ret operator (opcode 0x2A) is removed from the

original method end to the new method end to ensure execution of the post-hook.

 146

APPENDIX C

USING MOBILE AGENT FOR COMPONENT SEARCHING

 147

Figure C.1: Architecture of searching component with Voyager Agent; CIR: Compo-
nent-Info-Retrieval

Figure C.1 illustrates a prototype level example in the VoyagerTM environment re-

alizing the mobile agent search of components. Voyager ORB is a high-performance,

full-featured object request broker (ORB) that simultaneously supports universal com-

munication between Voyager, CORBA, RMI and DCOM objects. Its innovative dynamic

proxy generation removes the need for manual stub generation, and the built-in distrib-

uted garbage collection system eliminates the need to explicitly track remote object refer-

ences. Also remote classloading simplifies deployment and management of application

classes. The Voyager ORB also includes a universal, federated and distributed naming

service, an activation framework for object persistence, advanced messaging, mobile

agent technology and much more.

 148

The searching processes in Figure C.1 are as follows: A client component initiates

a search request with its query information regarding service attributes (1). The Servlet

parses the request parameters and then looks up the component in the repository (2). The

query result is returned to the Servlet (3). If a matching component is already available,

the Servlet returns the handle of that component to the client component (7). Otherwise

the Servlet launches a search process with the Agent Launcher (4). The Agent Launcher

will retrieve the URLs of remote Component-Info-Retrieval (CIR) objects from the Fed-

erated Directory Server (5); those URLs are registered leveraging the Voyager ORB's

federated distributed naming service by remote objects. The Agent Launcher then sends

out mobile agents searching for targeted components through CIR objects (6.1-6.3) and

the mobile agents return matching components to the Component Repository for further

inquiry by external client components (6.4). Once a matching component is found, client

and server components can address to each other directly.

Those parts enclosed by a line are in the Voyager environment. Components do

not have to reside in this environment. But their information has to be registered in that

environment for a mobile search. Below is the anatomy of the Meta Registry

The meta-registry includes the following three elements:

 Component Repository. Component Repository is used to store component infor-

mation after search is performed for external retrieval at any time. It also has a

timestamp attribute indicating its last update time, also a tag showing whether the

agent is still in searching status. The outside client can initiates a search and then

go ahead with other tasks asynchronously while the search process is underway in

the Voyager environment by mobile agents independently

 149

 Federated Directory Server. The federated Directory Server is built on top of the

Federated Directory Service of Voyager ORB. Every host in the Voyager envi-

ronment with components to be searched should register under this Federated Di-

rectory Server.This is realized by running a RegDir application at the component

host side. RegDir integrates the following processes:

1. Launch voyager server at the host side, export a component-info-retrieval

object at some URL. This component-info-retrieval (CIR, in short) object is de-

fined at the meta-registry side, but can be remote loaded without stub, which is

one of the strengths of the voyager ORB . Meanwhile, the corresponding URL

where this CIR object is exported is registered at the meta-side Federated Direc-

tory Server (the headhunter is only passive in this aspect).

2. The CIR object is only a reference to component information at the host

side. Multiple, heterogeneous components may reside at a single host. The CIR

object contains a handler to secondary storage (file or database, where component

information is stored), which is passed as one of the arguments of "RegDir". In

this way, components can achieve autonomy with regard to its actual implementa-

tion details.

 Agent Launcher. If the servlet cannot find matching components in the compo-

nent repository, it will initiate a new search process via the agent launcher. If the

agent launcher finds the searching is already underway, it will stop without any

further action. Otherwise, a mobile agent is to be created, with the CIR object

URLs retrieved as its member variables. Then the mobile agent will move into

those URLs one by one, make calls on the CIR object proxy (by looking up the

 150

corresponding URLs this CIR object binds to) to retrieve local component infor-

mation and then proceed to the next URL. If one URL is not accessible, the mo-

bile agent will try the next URL in turn, until all URLs are visited. Then it calls

getHome() to get the home URL and move back, duplicating all component in-

formation retrieved into the component repository, updating timestamp and some

tag for this repository. The agent has a member variable to hold component in-

formation during its mobile search.

	Table of Contents.pdf
	CHAPTER 2-background.pdf
	CHAPTER 3-modelWS.pdf
	CHAPTER 4 -dynaCom.pdf
	Table of Contents.pdf
	Page
	Page
	Page
	Page

	CHAPTER 2-background.pdf
	Figure 2.2: EJB component for Entity Bean and Session Bean
	Figure 2.12: Normalized feature representation
	Figure 2.15: Computing AND result
	Figure 2.16: Computing XOR result

	CHAPTER 3-modelWS.pdf
	3.2.1Rationales
	
	Figure 3.7: The meta-model of banking domain WSDL in GME
	Figure 3.8: The banking domain-specific WS modeling environment
	Figure 3.9: WSDL code synthesis using GME BON API
	Figure 3.10: The WSDL for a banking WS

	MDA
	XMI

	CHAPTER 4 -dynaCom.pdf
	4.2.2Salient features
	
	
	Figure 4.13: Benchmarking dynamic WS adaptation

